首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper proposes a mathematical model describing electrooxidation of a polydisperse system of metal nanoparticles from the surface of an indifferent macro-electrode. It is shown that the degree of dispersion of a nanoparticle ensemble affects the shape of oxidation voltammograms. When the degree of dispersion rises and the average size of nanoparticles becomes smaller, the range of oxidation potentials increases. The results of the experimental study of electrooxidation of gold nanoparticles with different degrees of dispersion are given. The particles were localized on the surface of graphite screen-printed electrodes. A good agreement between the parameters of the experimental and calculated voltammograms confirms the correctness of the proposed model.  相似文献   

2.
The article presents the findings of microscopic and electrochemical studies of size-dependent gold particles electrooxidation. Gold particles were immobilized on the surface of carbon-containing screen-printed electrodes. The experiment demonstrated that the transition from macroparticles to nanoparticles caused a shift of the maximum current potential of gold oxidation into the area with more negative potentials. A decrease in particle size resulted in an increase in the electrochemical activity of metal. A positive correlation between experimental and calculated curves confirms a mathematical model (2) and correctness of the calculations. Measured parameters of voltammograms, in particular, maximum current potential, can be used to describe the electrochemical activity and energy properties of nanoparticles.  相似文献   

3.
An understanding of the oxidation of chemisorbed CO (CO(chem)) on Pt nanoparticle surfaces is of major importance to fuel cell technology. Here, we report on the relation between Pt nanoparticle surface structure and CO(chem) oxidative stripping behavior. Oxidative stripping voltammograms are obtained for CO(chem) preadsorbed on cubic, octahedral, and cuboctahedral Pt nanoparticles that possess preferentially oriented and atomically flat domains. They are compared to those obtained for etched and thermally treated Pt(poly) electrodes that possess atomically flat, ordered surface domains separated by grain boundaries as well as those obtained for spherical Pt nanoparticles. A detailed analysis of the results reveals for the first time the presence of up to four voltammetric features in CO(chem) oxidative stripping transients, a prepeak and three peaks, that are assigned to the presence of surface domains that are either preferentially oriented or disordered. The interpretation reported in this article allows one to explain all features within the voltammograms for CO(chem) oxidative stripping unambiguously.  相似文献   

4.
A novel reagentless amperometric immunosensor for the determination of alpha‐fetoprotein (AFP) was prepared by immobilizing TiO2 colloids on Prussian blue (PB) modified platinum electrode, which yielded a positively charged interface with strong adsorption to deposit gold nanoparticles for immobilization of alpha‐fetoprotein antibody (anti‐AFP). The factors influencing the performance of the proposed immunosensors were studied in detail. Under the optimized conditions, cyclic voltammograms determination of AFP showed a specific response in two concentration ranges from 3.0 to 30.0 ng/mL and from 30.0 to 300.0 ng/mL with a detection limit of 1.0 ng/mL at a signal‐to‐noise ratio of 3. The proposed immunosensor exhibited high selectivity, good reproducibility, long‐term stability (>2 months) and good repeatability.  相似文献   

5.
Self‐assembled monolayers (SAMs) of 4‐aminothiophenol (4‐ATP) has been successfully deposited onto nanometer‐sized gold (Au) electrodes. The cyclic voltammograms obtained on a 4‐ATP SAMs modified electrode show peaks and the peak height is proportional to the scan rate, which is similar to that on an electroactive SAMs modified macro electrode. The electrochemical behavior and mechanism of outer‐sphere electron transfer reaction on the 4‐ATP SAMs modified nanometer‐sized electrode has also been studied. The 4‐ATP SAMs modified electrode is further modified with platinum (Pt) nanoparticles. Electrochemical behaviors show that there is electrical communication between Pt nanoparticles and Au metal on the Pt nanoparticles/4‐ATP SAMs/Au electrode. However, scanning electron microscopic image shows that the Pt nanoparticles are not evenly covered the electrode.  相似文献   

6.
Pt-Ru alloys are prominent electrocatalysts in fuel cell anodes as they feature a very high activity for the oxidation of reformate and methanol. The improved CO tolerance of these alloys has been discussed in relation to the so-called ligand and bifunctional mechanisms. Although these effects have been known for many years, they are still not completely understood. A new approach that bridges the gap between single crystals and practical catalysts is presented in this paper. Nanoparticulate model systems attached to an oxidized glassy carbon electrode were prepared by combining both ligand-stabilized and spontaneously deposited Pt and Ru nanoparticles. These electrodes showed very different voltammetric responses for CO and methanol oxidation. The cyclic voltammograms were deconvoluted into contributions attributed to Pt, Ru, and Pt-Ru contact regions to quantify the contribution of the latter to the bifunctional mechanism. Scanning transmission electron microscopy confirmed the proximity of Pt and Ru nanoparticles in the different samples.  相似文献   

7.
The preparation of titanium dioxide nanoparticles capped with stearate by sol-gel methods is presented in this paper. The nanoparticles are characterized by Fourier transform infrared spectroscopy and by X-ray photoelectron spectroscopy. Existence of the organic layer can be confirmed by the results of characterizations, which also indicate that the inorganic nuclei and organic surface layer are linked with chemical bonds. The nanoparticles are poorly crystallized based on the X-ray diffraction pattern. The mechanism of formation of the organo-capped nanoparticles is proposed to be competitive reactions between water and stearic acid, which is similar to a polymerization and inhibition processes. A structural model for organo-capped nanoparticles is also proposed. Copyright 2000 Academic Press.  相似文献   

8.
The interaction between citrate capped silver nanoparticles and two different thiols, mercaptohexanol(MH) and cysteine, was investigated. The thiols interacted with silver nanoparticles in a significantly contrasting manner. With MH, a sparingly soluble silver(I) thiolate complex AgSRm(Rm = –(CH2)6OH) was formed on the silver nanoparticle surface. Cyclic voltammograms and UV-vis spectra were used to infer that the AgSRm complex on the nanoparticle surface undergoes a phase transition to give a mixture of AgSRm and Ag2S-like complexes. In contrast, when silver nanoparticles were exposed to cysteine, the citrate capping agent on the silver nanoparticles was replaced by cysteine to give cysteine capped nanoparticles. As cysteine capped nanoparticles form, the electrochemical data displayed a decrease in oxidative peak charge but the UV-vis spectra showed a constant signal. Therefore, cysteine capped nanoparticles were suggested to have either inactivated the silver surface or else promoted detachment from the electrode surface.  相似文献   

9.
Hydrogen absorption in Ni–Pd alloys has been investigated. The amount of absorbed hydrogen in alloys containing below 20 at.% of nickel is equal to the amount of hydrogen sorbed in pure palladium. Hydrogen absorption occurs in the range 0–40 at.% of nickel concentration. Cyclic voltammograms recorded at Ni–Pd alloys have characteristic peaks which overlap with the responses due to processes occurring on the surface at Ni and Pd atoms. Also some of the processes characteristic of the pure metals can be distinguished from the recorded voltammograms.  相似文献   

10.
This work reports the application of a Bio-Electronic Tongue (BioET) system made from an array of enzymatic biosensors in the analysis of polyphenols, focusing on major polyphenols found in wine. For this, the biosensor array was formed by a set of epoxy-graphite biosensors, bulk-modified with different redox enzymes (tyrosinase and laccase) and copper nanoparticles, aimed at the simultaneous determination of the different polyphenols. Departure information was the set of voltammograms generated with the biosensor array, selecting some characteristic features in order to reduce the data for the Artificial Neural Network (ANN). Finally, after the ANN model optimization, it was used for the resolution and quantification of each compound. Catechol, caffeic acid and catechin formed the three-analyte case study resolved in this work. Good prediction ability was attained, therefore allowing the separate quantification of the three phenols with predicted vs. expected slope better than 0.970 for the external test set (n = 10). Finally, BioET has been also tested with spiked wine samples with good recovery yields (values of 104%, 117% and 122% for catechol, caffeic acid and catechin, respectively).  相似文献   

11.
何建波  李学良  林建新 《化学学报》1997,55(11):1103-1107
采用特定的电势扫描程序测出了浓碱溶液中Cu(I)阳极产物的多重还原电流峰。根据各峰之间转化或竞争的关系, 提出了亚铜氧化物的吸附成相和溶解沉淀两种途径共存的形成机理。为确定各阴极峰的归属, 本文采用了将阴极电流峰与XRD和XPS特征峰进行半定量对比的方法。  相似文献   

12.
In this work, silver (Ag) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by chemical reduction while Ag-decorated MWNTs (Ag-MWNTs)/polyaniline (PANI) composites were prepared by oxidation polymerization. The effect of the Ag incorporated into the interface of the composites on the electrochemical performance of the MWNTs/PANI was investigated. It was found that highly dispersed Ag nanoparticles were deposited onto the MWNTs, and the Ag-MWNTs were successfully coated by PANI. According to cyclic voltammograms, the Ag-MWNTs/PANI exhibited significantly increased electrochemical performances compared to MWNTs/PANI and the highest specific capacitance obtained of MWNTs/PANI and 0.15 M Ag-MWNTs/PANI was 162 F/g and 205 F/g, respectively. This indicated that Ag nanoparticles that were deposited onto the MWNTs caused an enhanced electrochemical performance of the MWNTs/PANI due to their high electric conductivity, which resulted in an increase of the charge transfer between the MWNTs and PANI by a bridge effect.  相似文献   

13.
Crossing of anodic and cathodic traces is frequently observed on cyclic voltammograms featuring the electrochemical induction of a chemical reaction in the case where the product standard potential is positive to the reactant reduction potential. The theory of this phenomenon has been established in the contaxt of aromatic nucleophilic substitution. The reaction of potassium diethyl phosphite on 4-chlorobenzonitrile in liquid ammonia was investigated as an example illustrating this type of phenomenon and its interpretation. The simulation of the experimental voltammograms demonstrates the proposed mechanistic and kinetic model and allows the rate constants of the various steps to be determined. Much higher rate constants can thus been attained than by the standard application of electrochemical techniques (the gain may reach five or six orders of magnitude). A procedure is derived from these observations and then a rationalization for inducing chemical reactions with a very low electricity consumption as opposed to that which occurs when the electrode potential is settled at the level of the reactant wave.  相似文献   

14.
纳米材料特有的尺寸效应、量子效应和表面效应使其具有许多异于常规材料的性质 ,在催化、生物传感器、微电子器件和磁性材料等诸多领域都有广泛的应用前景 [1] .已有专家预言 ,与纳米材料相关的技术将在新世纪经济发展中起主导作用 ,对其研究是目前科学研究中的热点 .金纳米颗粒是目前研究得最多的金属纳米材料体系 .传统的金纳米颗粒的制备方法以溶胶 -凝胶法为主 [2~ 4 ] ,所制备的金纳米颗粒的粒径较大 (一般大于 1 0 nm) ,粒径分布不均匀 ,易于团聚 ,因而限制了其应用 .为了解决上述问题 ,Brust等 [5]将硫醇化合物在金属表面的自组装…  相似文献   

15.
The classical model of particle coagulation on colloids is revisited to evaluate its applicability on the oriented attachment of nanoparticles. The proposed model describes well the growth behavior of dispersed nanoparticles during the initial stages of nanoparticle synthesis and during growth induced by hydrothermal treatments. Moreover, a general model, which combines coarsening (i.e., Ostwald ripening) and oriented attachment effects, is proposed as an alternative to explain deviations between experimental results and existing theoretical models.  相似文献   

16.
Gold nanoparticles were electrodeposited directly for the first time from a new electrolyte system: water-in-ionic liquid (W/IL) microemulsion. The electrochemical behavior of Au(Ш) in W/IL microemulsion was investigated. The cyclic voltammetry (CV) result of Au(Ш) shows a pair of redox peak. The effect of precursor apparent concentration on the reduction peak current density is similar to that in homogeneous solution such as aqueous solution. The effect of scan rate on the reduction peak current density is different from that in homogeneous solution. Linear-sweep voltammograms result for a rotating disk electrode in the W/IL microemulsion suggests that the reduction is kinetically limited and not transport limited. And also the activation energy of the reaction was calculated to be 26.7 KJ mol?1. The gold electrodeposits were characterized by scanning electron microscopy and X-ray diffraction. It is found that the gold electrodeposits are face-centered cubic and nanosized. Furthermore, the potential mechanism for the electrode reaction was proposed. In addition, the electrochemical properties of the gold nanoparticles were researched through the electro-oxidation of glycerol. The CV and electrochemical impedance spectroscopy studies demonstrate that the gold nanoparticles electrodeposited from W/IL microemulsion have much higher electro-catalytic activities than bare gold for glycerol oxidation.  相似文献   

17.
We present the theoretical treatment of cyclic voltammograms at microstructured electrodes. Calculations of voltammograms permit the determination of electrochemical parameters of redox systems in a single cell in parallel with the determinations of the spectroscopic parameters. The structural parameters of the electrode can be determined using the theoretical treatment presented if the electrochemical parameters of the redox system are known. Furthermore, lithographic-galvanic (LIGA) structures can be used as a model for microporous electrodes. Regression analysis was used to compare experimental and calculated cyclic voltammograms as well as to determine the electrochemical and spectroscopic parameters. A modified Randles-Sevčik equation has been derived to described the peak current dependence of cyclic voltammograms at micro-structured electrodes for both reversible and quasi-reversible charge transfer.  相似文献   

18.
A method for estimating pitting corrosion rate is proposed. The method is based on the analysis of anodic and cathodic voltammograms that were measured on the specimens of two types: on the test specimen coated with an oxide film, which formed under the open-circuit conditions, and on the specimen, whose surface was totally activated with aggressive ions. The use of Tafel portions of these voltammograms in various combinations enables us to estimate the corrosion potential and corrosion current for general corrosion proceeding in the induction period, for pitting corrosion at the initial stage of its development, for a highly developed pitting corrosion, when the major area of specimen surface is occupied with pits, and also in the intermediate case.  相似文献   

19.
采用模板法制备了二硫化钼中空球纳米材料,利用扫描电子电子显微镜、X射线衍射仪和Raman光谱仪对材料的形貌和结构进行表征.将适配体固定在金纳米粒子和二硫化钼共同修饰的电极上构建了一种新型的微小核糖核酸(microRNA)电化学生物传感器,采用循环伏安、微分脉冲伏安和电化学阻抗等技术对构筑的传感器进行表征.结果表明,microRNA浓度在1.0×10~(-10)~1.0×10~(-16)mol/L范围内峰电流(I)与microRNA浓度的负对数(-lgc)呈良好的线性,目标miRNA的检出限为0.55×10~(-16)mol/L.构建出的传感器具备选择性好、灵敏度高、稳定性强等特性,具有广阔的应用前景.  相似文献   

20.
The electrochemical behaviour of tetraalkylthiuram disulfides (RSSR) has been investigated by using cyclic voltammetry at various scan rates, temperatures, and for several organic moieties R. The experiments have been run for solutions of RSSR in acetonitrile, and also for solutions of dithiocarbamate salts (RS). These experiments show that RSSR is reducible into RSSR, but this latter is unstable, decomposing into RS and RS·. Furthermore, RSSR is partly dissociated into 2RS·, which is also a reducible species. A model is proposed, involving two redox couples RS·/RS and RSSR/RSSR. The corresponding voltammograms have been simulated and fitted to the experimental voltammograms at several temperatures. The experimental observation of the reduction of RS· for tetraisopropylthiuram disulfide solutions supports the proposed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号