首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The synthesis, characterization and thermal behavior of new monomeric allylpalladium (II) complexes with dichalcogenoamidodiphosphinate anions are reported. The complexes [R = H, R′ = Pri, E = S (1a); R = H, R′ = Pri, E = Se (1b); R = H, R′ = Ph, E = S (1c); R = H, R′ = Ph, E = Se (1d); R = Me, R′ = Pri, E = S (2a); R = Me, R′ = Pri, E = Se (2b); R = Me, R′ = Ph, E = S (2c); R = Me, R′ = Ph, E = Se (2d)] have been prepared by room temperature reaction of [Pd(η3-CH2C(R)CH2)(acac)] (acac = acetylacetonate) with dichalcogenoimidodiphosphinic acids in acetonitrile solution. The complexes have been characterized by multinuclear NMR (1H, 13C{1H}, 31P{1H}, 77Se{1H}), FT-IR and elemental analyses. The crystal structures of complexes 1a, 1d and 2d have been reported and they consist of a six-membered PdE2P2N ring (E = S for 1a and Se for 1d and 2d) and an allyl group, C3H4R(R = H for 1a and 1d and Me for 2d). Thermogravimetric studies have been carried out for few representative complexes. The complexes thermally decompose in argon atmosphere to leave a residue of palladium chalcogenides, which have been characterized by PXRD, SEM and EDS.  相似文献   

2.
The linear polysilanes [{RR′2Si(CH2)ySi(n-hex)}x{HSi(n-hex)}1−x]n (1-4; R = 2-thienyl, R′ = H; R = Me, R′ = 2-thienyl; y = 2, 3) have been synthesized by hydrosilylation reaction between preformed poly(n-hexylsilane) and (2-thienyl)vinyldichlorosilane/allyl(2-thienyl)dichlorosilane/bis(2-thienyl)methylvinylsilane/allyl-bis(2-thienyl)methylsilane using AIBN as the free radical initiator. GPC analysis reveals a monomodal molecular weight distribution in each case with Mw = 2492-3280 and PDI = 1.18-1.44. The polysilane 1 (R = 2-thienyl, R′ = H, y = 2) acts as reducing agent towards silver tetrafluoroborate under mild conditions (cyclohexane, rt, 5 h) to afford spherical silver nanoparticles of size 8.4 ± 0.7 nm, as evident from the TEM and dynamic light scattering (DLS) studies. The silver nanoparticles in the polymer matrix exhibit surface plasmon absorption at 420 nm suggesting the donor-acceptor interaction between the thienyl group and the metal nanocluster surface. This stabilization effect provides long shelf life stability to the nanoparticles in solution with no sign of agglomeration even after three months.  相似文献   

3.
Three new N2S2 donor ligands 1,1′-((2-(2-(phenylthio)phenylthio)phenyl)methylene)bis(3,5-R-1H-pyrazole), R = H (LH), R = Me (LMe), R = i-Pr (Li-Pr) have been prepared and characterized. These bifunctional ligands incorporate two distinct chelate donor systems, by virtue of the presence of bispyrazole and bisthioether functions. The preferred conformation of these ligands is such that the N2 and S2 donor moieties may be oriented in opposite directions, thus favoring the formation of molecular chains when treated with AgBF4. The X-ray structures of Ag(I) complexes show that, depending on the steric hindrance present on the pyrazole rings, these ligands behave as κ4-SSNN-μ bridging tetradentate (when R = H), or κ3-SNN-μ bridging tridentate (when R = Me, i-Pr). Interestingly, [Ag(LH)]BF4 crystallizes in the chiral space group P41, with the molecular chain that is folded around the 41 screw axis.  相似文献   

4.
New triorganotin(IV) derivatives of the general formula R3Sn(Umb) (where, R = Me, n-Bu and Ph; Umb = umbelliferone anion) have been synthesized using sodium salt method. Further, the adducts of the general formula R3Sn(Umb) · phen (where R = Me and Ph; phen = 1,10-phenanthroline) have also been synthesized by the interaction of the triorganotin(IV) derivatives of umbelliferone with 1,10-phenanthroline. The bonding and coordination behavior of these derivatives are discussed on the basis of IR, NMR (1H, 13C and 119Sn), and 119Sn Mössbauer spectroscopic studies. These investigations indicate that umbelliferone acts as a monoanionic bidentate ligand in R3Sn(Umb) coordinating through O(7) and O(1) in the solid-state. These polymeric R3Sn(Umb) derivatives (where R = Me and n-Bu) have been proposed to have a trans-trigonal bipyramidal geometry with the three R groups in equatorial positions, while the axial positions are occupied by a phenolic oxygen and the O(1) atom from the adjacent molecule. A pseudotetrahedral geometry has been suggested for Ph3Sn(Umb). A distorted octahedral geometry around tin has been proposed for R3Sn(Umb) · phen, in which umbelliferone anion acts as a monodentate ligand coordinating through phenolic oxygen O(7). The newly synthesized derivatives have been assayed for their anti-inflammatory, cardiovascular and anti-microbial activities. The average LD50 values >1000 mg kg−1 of these derivatives indicate their safety margin. Among all the compounds tested, Ph3Sn(Umb) · phen has been found to show potent anti-inflammatory activity with low mammalian toxicity and mild hypotensive activity.  相似文献   

5.
A series of organotin(IV) complexes with O,O-diethyl phosphoric acid (L1H) and O,O-diisopropyl phosphoric acid (L2H) of the types: [R3Sn · L]n (L = L1, R = Ph 1, R = PhCH22, R = Me 3, R = Bu 4; L = L2, R = Ph 9, R = PhCH210, R = Me 11, R = Bu 12), [R2Cl Sn · L]n (L = L1, R = Me 5, R = Ph 6, R = PhCH27, R = Bu 8; L = L2, R = Me 13, R = Ph 14, R = PhCH215, R = Bu 16), have been synthesized. All complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 31P and 119Sn) spectroscopy analysis. Among them, complexes 1, 2, 3, 5, 8, 9 and 11 have been characterized by X-ray crystallography diffraction analysis. In the crystalline state, the complexes adopt infinite 1D infinite chain structures which are generated by the bidentate bridging phosphonate ligands and the five-coordinated tin centers.  相似文献   

6.
The synthesis, characterization and thermal behaviour of some new dimeric allylpalladium (II) complexes bridged by pyrazolate ligands are reported. The complexes ; R = H, R′ = C(CH3)3 (1b), R = H, R′ = CF3 (1c); R = CH3, R′ = CH(CH3)2 (2a); R = CH3, R′ = C(CH3)3 (2b); and R = CH3, R′ = CF3 (2c)] have been prepared by the room temperature reaction of [Pd(η3-CH2C(R)CH2)(acac)](acac = acetylacetonate) with 3,5-disubstituted pyrazoles in acetonitrile solution. The complexes have been characterized by NMR (1H, 13C{1H}), FT-IR, and elemental analyses. The structure of a representative complex, viz. 2c, has been established by single-crystal X-ray diffraction. The dinuclear molecule features two formally square planar palladium centres which are bridged by two pyrazole ligands and the coordination of each metal centre is completed by allyl substituents. The molecule has non-crystallographic mirror symmetry. Thermogravimetric studies have been carried out to evaluate the thermal stability of these complexes. Most of the complexes thermally decompose in argon atmosphere to give nanocrystals of palladium, which have been characterized by XRD, SEM and TEM. However, complex 2c can be sublimed in vacuo at 2 mbar without decomposition. The equilibrium vapour pressure of 2c has been measured by the Knudsen effusion technique. The vapour pressure of the complex 2c could be expressed by the relation: ln (p/Pa)(±0.06) = −18047.3/T + 46.85. The enthalpy and entropy of vapourization are found to be 150.0 ± 3 kJ mol−1 and 389.5 ± 8 J K−1 mol−1, respectively.  相似文献   

7.
The diiron complexes [Fe(Cp)(CO){μ-η22-C[N(Me)(R)]NC(C6H3R′)CCH(Tol)}Fe(Cp)(CO)] (R = Xyl, R′ = H, 3a; R = Xyl, R′ = Br, 3b; R = Xyl, R′ = OMe, 3c; R = Xyl, R′ = CO2Me, 3d; R = Xyl, R′ = CF3, 3e; R = Me, R′ = H, 3f; R = Me, R′ = CF3, 3g) are obtained in good yields from the reaction of [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(p-NCC6H4R′)(Cp)2]+ (R = Xyl, R′ = H, 2a; R = Xyl, R′ = Br, 2b; R = Xyl, R′ = OMe, 2c; R = Xyl, R′ = CO2Me, 2d; R = Xyl, R′ = CF3, 2e; R = Me, R′ = H, 2f; R = Me, R′ = CF3, 2g) with TolCCLi. The formation of 3 involves addition of the acetylide at the coordinated nitrile and C-N coupling with the bridging aminocarbyne together with orthometallation of the p-substituted aromatic ring and breaking of the Fe-Fe bond. Complexes 3a-e which contain the N(Me)(Xyl) group exist in solution as mixtures of the E-trans and Z-trans isomers, whereas the compounds 3f,g, which posses an exocyclic NMe2 group, exist only in the Z-cis form. The crystal structures of Z-trans-3b, E-trans-3c, Z-trans-3e and Z-cis-3g have been determined by X-ray diffraction experiments.  相似文献   

8.
Five non-symmetrical PCN pincer palladium(II) complexes [PdCl{C6H3-2-(CHNR)-6-()}] (R = m-ClC6H4, R′ = Ph (2a); R = Ph, R′ = Ph (2b); R = i-Pr, R′ = Ph (2c); R = m-ClC6H4, R′ = i-Pr (2d); R = (S)-1-phenylethyl, R′ = Ph (2e)) have been easily prepared in only two steps from readily available m-hydroxybenzaldehyde and characterized by HRMS, 1H NMR, 13C NMR, 31P NMR and IR spectra. The molecular structures of 2a and 2b have been further determined by X-ray single-crystal diffraction. The obtained Pd complexes were found to be effective catalysts for the Suzuki and copper-free Sonogashira cross-coupling reactions which could be carried out in the undried solvent under air.  相似文献   

9.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

10.
A series of new triorganotin(IV) pyridinecarboxylates with 6-hydroxynicotinic acid (6-OH-3-nicH), 5-hydroxynicotinic acid (5-OH-3-nicH) and 2-hydroxyisonicotinic acid (2-OH-4-isonicH) of the types: [R3Sn (6-OH-3-nic)·L]n (I) (R = Ph, L = Ph·EtOH, 1; R = Bn, L = H2O·EtOH, 2; R = Me, L = 0, 3; R = n-Bu, L = 0, 4), [R3Sn (5-OH-3-nic)]n (II) (R = Ph, 5; R = Bn, 6; R = Me, 7; R = n-Bu, 8), [R3Sn (2-OH-4-isonic·L)]n (III) (R = Bn, 9, L = MeOH; R = Me, L = 0, 10; R = Ph, 11, L = 0.5EtOH) have been synthesized. All the complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 119Sn) spectroscopy analyses. Among them, except for complexes 5 and 6, all complexes were also characterized by X-ray crystallography diffraction analysis. Crystal structures show that complexes 1-10 adopt 1D infinite chain structures which are generated by the bidentate O, O or N, O and the five-coordinated tin centers. Significant O-H?O, and N-H?O intermolecular hydrogen bonds stabilize these structures. Complex 11 is a 42-membered macrocycle containing six tin atoms, and forms a 2D network by intermolecular N-H?O hydrogen.  相似文献   

11.
The complex [(η5-C5H5)Ru(PPh3)2Cl] (1) reacts with several arylazoimidazole (RaaiR′) ligands, viz., 2-(phenylazo)imidazole (Phai-H), 1-methyl-2-(phenylazo)imidazole (Phai-Me), 1-ethyl-2-(phenylazo)imidazole (Phai-Et), 2-(tolylazo)imidazole (Tai-H), 1-methyl-2-(tolylazo)imidazole (Tai-Me) and 1-ethyl-2-(tolylazo)imidazole (Tai-Et), gave complexes of the type [(η5-C5H5)Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (2), R = H, R′ = CH3 (3), R = H, R′ = C2H5 (4), R = CH3, R′ = H (5), R, R′ = CH3 (6), R = CH3, R′ = C2H5 (7)}. The complex [(η5-C9H7)Ru(PPh3)2(CH3CN)]+ (8) undergoes reactions with a series of N,N-donor azo ligands in methanol yielding complexes of the type [(η5-C9H7) Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (9), R = H, R′ = CH3 (10), R = CH3, R′ = H (11), R = CH3, R′ = C2H5 (12)}, respectively. These complexes were characterized by FT IR and FT NMR spectroscopy as well as by analytical data. The molecular structure of the complex [(η5-C5H5)Ru(PPh3)(C6H5-NN-C3H3N2)]+ (2) was established by single crystal X-ray diffraction study.  相似文献   

12.
A variety of homoatomic P-P donor-acceptor homoleptic (R = R′) and heteroleptic (R ≠ R′) N-phosphino formamidine complexes [iPr2N-C(H)N-PR2-PR′2]Cl were synthesized from the addition of N-phosphino formamidine (phosfam) donor reagent iPr2N-C(H)N-PR2 on halogenophosphane compounds R′2PCl which are synthetic sources for the corresponding phosphenium derivatives R2P+. We have demonstrated that the dynamic equilibrium observed between the different species is shifted either completely to the side of the free species or to the side of the donor-acceptor adduct [iPr2N-C(H)N-PPh2-PPh2]Cl by changing the solvent or by varying the temperature. Activation parameters of ΔS = (−130 ± 7.2) J mol−1 K−1, ΔH = (8.4 ± 0.6) kJ mol−1 and ΔG (298.15 K) = (53.6 ± 2.3) kJ mol−1 were determined by an Eyring analysis over the temperature range of 193-293 K. The negative entropy of activation is consistent with an associative pathway and the low value of ΔH suggests that the energy barrier for this reaction is entropically controlled. Phosphine-phosphenium adducts is the most appropriate term to describe the dynamic process observed at variable temperature for complexes [iPr2N-C(H)N-PR2 → PR′2]+, but the 31P NMR chemical shift and the calculated electronic charges are more in favor of a phosphinophosphonium Lewis drawing [iPr2N-C(H)N-PR2-PR′2]+. Formation of the homoatomic P-P heteroleptic formamidine complexes [iPr2N-C(H)NPR′2PR2]Cl (R = Ph, R′ = Et, iPr) results in the formal insertion of the phosphino group of the corresponding alkyl chlorophosphanes R′2PCl into the N-P bond of the starting phosfam ligand iPr2N-C(H)N-PR2. Computed data are in agreement with the transient formation of a heteroatomic N-P intermediate [iPr2N-C(H)N(PR2)PR′2]Cl, which then rearranges to the more thermodynamically favored homoatomic P-P compound [iPr2N-C(H)N-PR2-PR′2]Cl.  相似文献   

13.
Addition of R′2PCl to anilines substituted with di- or trimethylcyclopentadienyl unit at ortho-position affords ortho-phenylene-bridged Me2Cp or Me3Cp/phosophinoamide ligands, 2-(RMe2C5H2)C6H4NHPR′2 (R = Me or H; R′ = Ph, iPr, or Cyclohexyl). Successive addition of Ti(NMe2)4 and Me2SiCl2 to the ligands affords the desired dichlorotitanium complexes, [2-(η5-RMe2C5H)C6H4NPR′ 2κ2N,P]TiCl2 (R = H, R′ = Ph, 9; R = Me, R′ = Ph, 10; R = H, R′ = iPr, 11; R = Me, R′ = iPr, 12; R = H, R′ = Cy, 13; R = Me, R′ = Cy, 14). By using Zr(NMe2)4 instead of Ti(NMe2)4, a zirconium complex, [2-(η5-Me3C5H)C6H4NP(iPr)2κ2N,P]ZrCl2 (15) is prepared. Molecular structures of 10, 14 and [2-(η5-Me2C5H2)C6H4NPPh2κN]Ti(NMe2)2 (16) were determined. The metric parameters determined on the X-ray crystallographic studies and the chemical shifts of the 31P NMR signal indicate that the phosphorous atom coordinates to the titanium in the dichloro-complexes 9-15. The titanium and zirconium complexes show negligible activity in ethylene and ethylene/1-hexene (co)polymerization when activated with MAO or iBu3Al/[Ph3C][B(C6F5)4].  相似文献   

14.
The dialkylgallium chlorides R2GaCl (R = Me, Et, CMe3) reacted with hydrazines H2N-N(H)R′ (R′ = CMe3, C6H5) to form the adducts R2ClGa ← NH2-N(H)R′ (1-4), in which the gallium atoms are coordinated by the NH2 nitrogen atoms of the hydrazine ligands. Treatment of these adducts with tert-butyllithium as a base afforded dialkylgallium hydrazides (R2Ga-N2H2R′)2 [5 (R = R′ = CMe3) and 6 (R = CMe3, R′ = C6H5)] by deprotonation of the hydrazine ligands and precipitation of LiCl in two cases only. The remaining adducts gave a substitution reaction at gallium or an unclear reaction course. The hydrazides 5 and 6 adopt different structures in the solid state. The tri(tert-butyl) compound 5 possesses a four-membered Ga2N2 heterocycle in its molecular core with two exocyclic N-N bonds, which represents the structural motif usually observed for dialkylgallium hydrazides. 6 has a five-membered Ga2N3 heterocycle with one endocyclic and one exocyclic N-N bond. That structure is preserved in solution as clearly shown by NMR spectroscopy. The behaviour of 5 in solution is more complicated, which may be caused by cis/trans isomerization.  相似文献   

15.
The ligands (HL1, HL2 and HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in chloroform gave the adducts [ReX(CO)3(HL)] (1a X = Cl, R = H; 1a′ X = Br, R = H; 1b X = Cl, R = CH3; 1b′ X = Br, R = CH3; 1c X = Cl, R = Ph; 1c′ X = Br, R = Ph) in good yield. All the compounds have been characterized by elemental analysis, mass spectrometry (FAB), IR and 1H NMR spectroscopic methods, and the structures of the ligands have been elucidated by X-ray diffraction. In the case of HL1, we have tried the reaction with [ReX(CO)5] (X = Br, Cl) in toluene and we proved the formation of the adduct also by this way by the isolation of single crystals of 1a′ · ½C7H8.  相似文献   

16.
The bridging diiron thiocarbyne complex [Fe2{μ-CS(Me)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1) reacts with activated olefins (methyl acrylate, acrylonitrile, styrene, diethyl maleate), in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13-Cα(SMe)Cβ(R′)Cγ(H)(R″)} (μ-CO)(CO)(Cp)2] (R″ = CO2Me, R′ = H, 3a; R″ = CN, R′ = H, 3b; R″ = C6H5, R′ = H, 3c; R″ = R′ = CO2Et, 3d). The coupling reaction of olefin with thiocarbyne is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs between the less substituted alkene carbon and the thiocarbyne. Moreover, olefinic hydrogens of the bridging ligands are mutually trans.The reactions of 3a-b with MeSO3CF3 result, selectively, in the formation of the cationic μ-sulphonium allylidene complexes [Fe2{μ-η13-Cα(SMe2)Cβ (H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CO2Me, 4a; R = CN, 4b). Compound 4a undergoes displacement of the SMe2 group by nucleophiles such as NaBH4, NBu4CN and NaOMe, affording the complexes [Fe2{μ-η13-Cα(R)Cβ (H)Cγ(H)(CO2Me)}(μ-CO)(CO)(Cp)2] (R = H, 5a; R = CN, 5b; R = OMe, 5c), respectively. The molecular structures of 3a and 5a have been determined by X-ray diffraction studies.  相似文献   

17.
The reactions of the trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-h: R′ = Ph, 1a: R = H, 1b: R = Me, 1c: R = Et, 1d: R = iPr, 1e: R = tBu, 1f: R = Ph, 1g: R = 2,4,6-Me3C6H2 (Mes), 1h: R = 2,4,6-(Me2CH)3C6H2 (Tip); 1i: R = R′ = Mes) with lithium metal in tetrahydrofuran (THF) at −78 °C and in a mixture of THF/diethyl ether/n-pentane in a volume ratio 4:1:1 at −110 °C lead to mixtures of numerous compounds. Dependent on the substituents silyllithium derivatives (Me3SiO)RR′SiLi (2b-i), Me3SiO(RR′Si)2Li (3a-g), Me3SiRR′SiLi (4a-h), (LiO)RR′SiLi (12e, 12g-i), trisiloxanes (Me3SiO)2SiRR′ (5a-i) and trimethylsiloxydisilanes (6f, 6h, 6i) are formed. All silyllithium compounds were trapped with Me3SiCl or HMe2SiCl resulting in the following products: (Me3SiO)RR′SiSiMe2R″ (6b-i: R″ = Me, 7c-i: R″ = H), Me3SiO(RR′Si)2SiMe2R″ (8a-g: R″ = Me, 9a-g: R″ = H), Me3SiRR′SiSiMe2R″ (10a-h: R″ = Me, 11a-h: R″ = H) and (HMe2SiO)RR′SiSiMe2H (13e, 13g-i). The stability of trimethylsiloxysilyllithiums 2 depends on the substituents and on the temperature. (Me3SiO)Mes2SiLi (2i) is the most stable compound due to the high steric shielding of the silicon centre. The trimethylsiloxysilyllithiums 2a-g undergo partially self-condensation to afford the corresponding trimethylsiloxydisilanyllithiums Me3SiO(RR′Si)2Li (3a-g). (Me3)Si-O bond cleavage was observed for 2e and 2g-i. The relatively stable trimethylsiloxysilyllithiums 2f, 2g and 2i react with n-butyllithium under nucleophilic butylation to give the n-butyl-substituted silyllithiums nBuRR′SiLi (15g, 15f, 15i), which were trapped with Me3SiCl. By reaction of 2g and 2i with 2,3-dimethylbuta-1,3-diene the corresponding 1,1-diarylsilacyclopentenes 17g and 17i are obtained.X-ray studies of 17g revealed a folded silacyclopentene ring with the silicon atom located 0.5 Å above the mean plane formed by the four carbon ring atoms.  相似文献   

18.
Allenic imidothioates, H2CCC(Ph)C(SMe)NR (R = Me, t-Bu, Ph) have been obtained in good yields by reaction of 1,3-dilithiated 1-(2-propynyl)benzene with isothiocyanates and successive addition of t-butyl alcohol and methyl iodide. Heating the imidothioates at ∼120 °C gave an iminocyclobutene as the only isolated product (if R = t-Bu), a ∼4:6 mixture of a 2,3-dihydropyridine and an iminocyclobutene (if R = Me) or a 3:1 mixture of a quinoline and an iminocyclobutene (if R = Ph).  相似文献   

19.
Eight new organoantimony(V) complexes with 1-phenyl-1H-tetrazole-5-thiol [L1H] and 2,5-dimercapto-4-phenyl-1,3,4-thiodiazole [L2H] of the type RnSbL5 − n (L = L1: n = 4, R = n-Bu 1, Ph 2, n = 3, R = Me 3, Ph 4; L = L2: n = 4, R = n-Bu 5, Ph 6, n = 3, R = Me 7, Ph 8) have been synthesized. All the complexes 1-8 have been characterized by elemental, FT-IR, 1H and 13C NMR analyses. Among them complexes 2, 6 and 8 have also been confirmed by X-ray crystallography. The structure analyses show that the antimony atoms in complexes 2 and 6 display a trigonal bipyramid geometry, while it displays a distorted capped trigonal prism in complex 8 with two intramolecular Sb?N weak interactions. Furthermore, the supramolecular structure of 2 has been found to consist of one-dimensional linear molecular chain built up by intermolecular C-H?N weak hydrogen bonds, while a macrocyclic dimer has been found in complex 6 linked by intermolecular C-H?S weak hydrogen bonds with head-to-tail arrangement. Interestingly, one-dimensional helical chain is recognized in complex 8, which is connected by intermolecular C-H?S weak hydrogen bonds.  相似文献   

20.
Schiff’s base condensation of 2,6-diformyl-4-R-phenol and affords 34-membered macrocyclic tetraiminodiphenol compounds, (R = H and R′ = iPr, 1; R = Me and R′ = iPr, 2; R = F and R′ = iPr, 3; R = Me and R′ = Et, 4; R = F and R′ = Et, 5) in good yields (47-62%), from which dinuclear nickel complexes, (R = H and R′ =  iPr, 6; R = Me and R′ = iPr, 7; R = F and R′ = iPr, 8) are prepared. Molecular structures of 2, dipotassium salt of 1, and 7 were confirmed by X-ray crystallography. Addition of B(C6F5)3 to a toluene solution of 6-8 gives insoluble precipitates which show good activity for ethylene polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号