首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
N-thioamide thiosemicarbazone derived from 4-(methylthio)benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in methanol gave the adducts [ReX(CO)3(HLn)] (1a X = Cl, n = 1; 1a′ X = Br, n = 1; 1b X = Cl, n = 2; 1b′ X = Br, n = 2; 1c X = Cl, n = 3; 1c′ X = Br, n = 3) in good yield.All the compounds have been characterized by elemental analysis, mass spectrometry (ESI), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3, HL3·(CH3)2SO and 1b′·H2O were also elucidated by X-ray diffraction. In 1b′, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms (κS,N3) forming a five-membered chelate ring, as well as three carbonyl and bromide ligands. The resulting coordination polyhedron can be described as a distorted octahedron.The structure of the dimers is based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6] (2a), [Re2(L2)2(CO)6] (2b) and [Re2(L3)2(CO)6] (2c) as determined by X-ray studies. Methods of synthesis were optimized to obtain amounts of these thiosemicarbazonate complexes. In these compounds the dimer structures are achieved by Re-S-Re bridges, where S is the thiolate sulphur from a κS,N3-bidentate thiosemicarbazonate ligand.Some single crystals isolated in the synthesis of 2b contain [Re(L4)(L2)(CO)3] (3b) where L4 (=2-methylamine-5-(para-methylsulfanephenyl)-1,3,4-thiadiazole) is originated in a cyclization process of the thiosemicarbazone. Furthermore, the rhenium atom is coordinate by the sulphur and the thioamidic nitrogen of the thiosemicarbazonate (κS,N2) affording a four-membered chelate ring.  相似文献   

2.
The zwitterionic vinyliminium complex [Fe2{μ-η13-C(R′)C(S)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (2a) (R′ = p-Me-C6H4 (Tol), Xyl = 2,6-Me2C6H3) undergoes electrophilic addition at the S atom by HSO3CF3, MeSO3CF3, SiMe3Cl, BrCH2Ph, ICH2CHCH2 affording the complexes [Fe2{μ-η13-C(Tol)C(SX)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][Y] (X =  H, Y = SO3CF3, 4a; X = Me, Y = SO3CF3, 4b; X = SiMe3, Y = Cl, 4c; X = CH2Ph, Y = Br, 4d; X = CH2CHCH2, Y = I, 4e).Compound 2a and the corresponding vinyliminium complexes 2b and 2c (R′ = CH2OH, 2b; R′ = Me, 2c) react also with etherated BF3 leading to the formation of the corresponding S-adducts [Fe2{μ-η13-C(R′)C(SBF3)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (R′ = Tol, 5a; R′ = CH2OH, 5b; R′ = Me, 5c).In analogous reactions, the zwitterionic vinyliminium complexes undergo S-metalation upon treatment with in situ generated [Fp]+[SO3CF3] [Fp = Fe(CO)2(Cp)], leading to the formation of [Fe2{μ-η13-C(R′)C(S-Fp)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3](R′ = CH2OH, 6a; R′ = Me, 6b; R′ = Bun, 6c).Similarly, zwitterionic vinyliminium containing Se in the place of S also undergo Se-electrophilic addition. Thus, the complexes [Fe2{μ-η13-C(R′)C(SeX)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = X = Me, R′ = Tol, 7a; R = Xyl, R′ = Me, X = Fp+, 7b) are obtained upon treatment of the neutral zwitterionic precursors with MeSO3CF3 and [Fp][SO3CF3], respectively.Alkylation at the S or Se atom of the bridging ligand is also accomplished by CH2Cl2, used as solvent, although the reaction is slower compared to more efficient alkylating reagents. The complexes formed by this route are [Fe2{μ-η13-C(R′)C(E-CH2Cl)CN(Me)(R)}(μ-CO)(CO)(Cp)2][X] [E = S, R = Xyl, R′ = Tol, X = Cl, 8a; E = S, R = Xyl, R′ = Me, X = Cl, 8b; E = Se, R = R′ = Me, X = BPh4, 8c].Finally, treatment of the zwitterionic vinyliminium complexes with I2 results in the oxidative coupling with formation of S-S (disulfide) or Se-Se (diselenide) bond. The reactions, performed in the presence of NaBPh4 afford the tetranuclear complexes [Fe2{μ-η13-C(R′)C(E)CN(Me)(R)}(μ-CO)(CO)(Cp)2]2[BPh4]2 [R = Xyl, R′ = CH2OH, E = S, 9a; R = Xyl, R′ = Me, E = S, 9b; R = Xyl, R′ = Bun, E = S, 9c; R = Xyl, R′ = Me, E = Se, 9d; R = Me, R′ = Bun, E = Se, 9e].The molecular structures of 4a, 8c and 9e have been determined by X-ray diffraction studies.  相似文献   

3.
Reactions of bis(pyridin-2-yl)ketone with tin tetrahalides, SnX4 (X = Cl or Br), or organotin trichlorides, RSnCl3 (R = Ph, Bu or CH2CH2CO2Me), in ROH (R = Me or Et) readily produces RObis(pyridin-2-yl)methanolato)tin complexes, [5: RO(py)2C(OSnX3)] (5: R,X = Me,Cl; Et,Cl; Et,Br) or [6: MeO(py)2C(OSnCl2R)] (R = Ph, Bu, CH2CH2CO2Me). In addition, halide exchange reaction between SnI4 and (5: R,X = Me,Cl) occurred to give (5: R,X = Me,I). The crystal structures of six tin(IV) derivatives indicated, in all cases, a monoanionic tridentate ligand, [RO(py)2C(O)-N,O,N], arranged in a fac manner about a distorted octahedral tin atom. The Sn–O and Sn–N bonds lengths do not show much variation amongst the six complexes despite the differences in the other ligands at tin.  相似文献   

4.
Rhenium(I) tricarbonyl complexes with bispyridine ligands bearing sulfur-rich pendant, Re(CO)3(Medpydt)X (Medpydt = dimethyl 2-(di(2-pyridyl)methylene)-1,3-dithiole-4,5-dicarboxylate; X = Cl, 1; X = Br, 2) and Re(CO)3(MebpyTTF)X (MebpyTTF = 4,5-bis(methyloxycabonyl)-4′,5′-(4′-methyl-2,2′-dipyrid-4-ylethylenedithio)-tetrathiafulvalene; X = Cl, 5; X = Br, 6), were prepared from the reactions between Re(CO)5X (X = Cl, Br) and Medpydt or MebpyTTF, respectively. Hydrolysis of the above complexes afforded the analogues with carboxylate derivatives, Re(CO)3(H2dpydt)X (X = Cl, 3; X = Br, 4) and Re(CO)3(H2bpyTTF)X (X = Cl, 7; X = Br, 8). The crystal structures for complexes 1 · 2H2O, 5 and 6 were determined using X-ray single crystal diffraction. UV-Vis absorption spectra of the rhenium complexes show the intraligand and MLCT transitions. Electrochemical behaviors of all new compounds were studied with cyclic voltammetry. Upon irradiation, complexes 3-6 exhibit blue to red emissions in fluid solutions at the room temperature. The performance of complexes 3, 4, 7 and 8 as photosensitizers for anatase TiO2 solar cells was preliminarily investigated as well.  相似文献   

5.
6.
Halogenomethyl-dihalogen-indium(III) compounds X2InCH2X (X = Br, I) obtained from indium monohalides and methylene dihalides were reacted with the soft donor ligands dialkylsulfides, R2S (R = CH3, CH2Ph) to afford the corresponding dialkylsulfonium methylide complexes of InX3, X3InCH2SR2 (X = Br, R = CH3, 1; X = I, R = CH3, 2; X= I, R = CH2Ph, 3). Compound 1 was reacted with the hard donor ligands dimethylsulfoxide or triphenylphosphine oxide to give the corresponding 1:1 adduct, Br3(L)InCH2S(CH3)2 (L = (CH3)2SO, 4; L = (C6H5)3PO, 5). Compounds 1-5 were fully characterized in solution by NMR spectroscopy and in the solid state by X-ray methods.  相似文献   

7.
The first gold(I) trithiophosphite complexes were synthesised and fully characterised. Reaction of (tht)AuX (X = Cl, C6F5; tht = tetrahydrothiophene) with trithiophosphites (RS)3P (R = Me, Ph) and the bicyclic [(SCH2CH2S)PSCH2]2 (2L) afforded the corresponding molecular complexes (RS)3PAuX [R = Me, X = Cl (1); R = Me, X = C6F5 (2); R = Ph, X = Cl (3); R = Ph, X = C6F5 (4)], and 2L(AuX)2 [X = Cl (5), X = C6F5 (6)]. Reacting (tht)AuCl consecutively with two mole equivalents of (MeS)3P and then AgOTf, gave the ionic compound {[(MeS)3P]2Au}OTf (7). The compounds were characterised by multinuclear NMR spectroscopy, IR measurements and mass spectrometry, and the crystal and molecular structures of 1, 3, 6, two polymorphs of 2 as well as the known (MeO)3PAuCl (8) were determined by X-ray diffraction. The halide complexes 1 and 8 are isostructural and exhibit infinite chains of “crossed-sword”-type aurophilic interactions with Au?Au contact distances of 3.2942(3) and 3.1635(4) Å, respectively. Complex 6 exhibits a long Au?Au contact of 3.4671(9) Å. Au?S interactions between 3.3455(7) and 3.520(2) Å are present in the structures of 1 and one polymorph of 2.  相似文献   

8.
The complex [(η5-C5H5)Ru(PPh3)2Cl] (1) reacts with several arylazoimidazole (RaaiR′) ligands, viz., 2-(phenylazo)imidazole (Phai-H), 1-methyl-2-(phenylazo)imidazole (Phai-Me), 1-ethyl-2-(phenylazo)imidazole (Phai-Et), 2-(tolylazo)imidazole (Tai-H), 1-methyl-2-(tolylazo)imidazole (Tai-Me) and 1-ethyl-2-(tolylazo)imidazole (Tai-Et), gave complexes of the type [(η5-C5H5)Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (2), R = H, R′ = CH3 (3), R = H, R′ = C2H5 (4), R = CH3, R′ = H (5), R, R′ = CH3 (6), R = CH3, R′ = C2H5 (7)}. The complex [(η5-C9H7)Ru(PPh3)2(CH3CN)]+ (8) undergoes reactions with a series of N,N-donor azo ligands in methanol yielding complexes of the type [(η5-C9H7) Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (9), R = H, R′ = CH3 (10), R = CH3, R′ = H (11), R = CH3, R′ = C2H5 (12)}, respectively. These complexes were characterized by FT IR and FT NMR spectroscopy as well as by analytical data. The molecular structure of the complex [(η5-C5H5)Ru(PPh3)(C6H5-NN-C3H3N2)]+ (2) was established by single crystal X-ray diffraction study.  相似文献   

9.
The reaction of Ni(OAc)2, NiX2 (X = Cl, Br) or CoCl2 with the proligand 2-amino-2-methyl-1,3-propanediol (ampdH2) affords a new family of tetranuclear complexes. The syntheses of [Ni4(OAc)4(ampdH)4] (1) and [M4X4(ampdH)4] (M = Ni, X = Cl, 2; M = Ni, X = Br, 3; M = Co, X = Cl, 4) are reported, together with the single crystal X-ray structures of 1, 2 and 4 and the magnetochemical characterization of 1, 3 and 4. Each member of this family of complexes displays a low symmetry structure that incorporates a {M4O4} core unit based on a distorted cubane. Magnetic measurements reveal ferromagnetic exchange interactions for 1, 3 and 4. These give rise to S = 4 ground state spins for the tetranuclear Ni complexes and an anisotropic effective S′ = 2 ground state for the Co complex.  相似文献   

10.
Primary alkynes R′CCH [R′ = Me3Si, Tol, CH2OH, CO2Me, (CH2)4CCH, Me] insert into the metal-carbon bond of diruthenium μ-aminocarbynes [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] [R = 2,6-Me2C6H3 (Xyl), 1a; CH2Ph (Bz), 1b; Me, 1c] to give the vinyliminium complexes [Ru2{μ-η13-C(R′)CHCN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] [R = Xyl, R′ = Me3Si, 2a; R = Bz, R′ = Me3Si, 2b; R = Me, R′ = Me3Si, 2c; R = Xyl, R′ = Tol, 3a; R = Bz, R′ = Tol, 3b; R = Bz, R′ = CH2OH, 4; R = Bz, R′ = CO2Me, 5a; R = Me, R′ = CO2Me, 5b; R = Xyl, R′ = (CH2)4CCH, 6; R = Xyl, R′ = Me, 7a; R = Bz, R′ = Me, 7b; R = Me, R′ = Me, 7c]. The related compound [Ru2{μ-η13-C[C(Me)CH2]CHCN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3], (9) is better prepared by reacting [Ru2{μ-CN(Me)(Xyl)}(μ-CO)(CO)(Cl)(Cp)2] (8) with AgSO3CF3 in the presence of HCCC(Me)CH2 in CH2Cl2 at low temperature.In a similar way, also secondary alkynes can be inserted to give the new complexes [Ru2{μ-η13-C(R′)C(R′)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Bz, R′ = CO2Me, 11; R = Xyl, R′ = Et, 12a; R = Bz, R′ = Et, 12b; R = Xyl, R′ = Me, 13). The reactions of 2-7, 9, 11-13 with hydrides (i.e., NaBH4, NaH) have been also studied, affording μ-vinylalkylidene complexes [Ru2{μ-η13-C(R′)C(R″)C(H)N(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Bz, R′ = Me3Si, R″ = H, 14a; R = Me, R′ = Me3Si, R″ = H, 14b; R = Bz, R′ = Tol, R″ = H, 15; R = Bz, R′ = R″ = Et, 16), bis-alkylidene complexes [Ru2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (R′ = Me3Si, R″ = H, 17; R′ = R″ = Et, 18), acetylide compounds [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(CCR′)(Cp)2] (R = Xyl, R′ = Tol, 19; R = Bz, R′ = Me3Si, 20; R = Xyl, R′ = Me, 21) or the tetranuclear species [Ru2{μ-η12-C(Me)CCN(Me)(Bz)}(μ-CO)(CO)(Cp)2]2 (23) depending on the properties of the hydride and the substituents on the complex. Chromatography of 21 on alumina results in its conversion into [Ru2{μ-η31-C[N(Me)(Xyl)]C(H)CCH2}(μ-CO)(CO)(Cp)2] (22). The crystal structures of 2a[CF3SO3] · 0.5CH2Cl2, 12a[CF3SO3] and 22 have been determined by X-ray diffraction studies.  相似文献   

11.
The unsymmetrically substituted diorganotellurium dihalides [2-(4,4′-NO2C6H4CHNC6H3Me]RTeX2 (R = 4-MeOC6H4, X = Cl, 1a; Br, 1b; I, 1c; R = 4-MeC6H4; X = Cl, 2; R = C6H5, X = Cl, 3) were prepared in good yields and characterized by solution and solid-state 125Te NMR spectroscopy, IR spectroscopy and X-ray crystallography. In the solid-state, molecular structures of 1a and 1c possess scarcely observed 1,4-type intramolecular Te?N secondary interaction. Crystal packing of these compounds show an unusually rich diversity of intermolecular secondary, Te?O, Te?I and I?I interactions, Te?π contacts as well as extensive π-stacking of the organic substituents.  相似文献   

12.
A series of new hydroxyindanimine ligands [ArNCC2H3(CH3)C6H2(R)OH] (Ar = 2,6-i-Pr2C6H3, R = H (HL1), R = Cl (HL2), and R = Me (HL3)) were synthesized and characterized. Reaction of hydroxyindanimine with Cu(OAc)2 · H2O results in the formation of the mononuclear bis(hydroxyindaniminato)copper(II) complexes Cu[ArNCC2H3(CH3)C6H2(R)O]2 (Ar = 2,6-i-Pr2C6H3, R = H (1), R = Cl (2), and R = Me (3)). The complex 2′ was obtained from the chlorobenzene solution of the complex 2, which has the same molecule formula with the complex 2 but it is a polymorph. All copper(II) complexes were characterized by their IR and elemental analyses. In addition, X-ray structure analyses were performed for complexes 1, 2, and 2′. After being activated with methylaluminoxane (MAO), complexes 1-3 can be used as catalysts for the vinyl polymerization of norbornene with moderate catalytic activities. Catalytic activities and the molecular weight of polynorbornene have been investigated for various reaction conditions.  相似文献   

13.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

14.
In an effort to find simple and common single-source precursors for palladium sulfide nanostructures, palladium(II) complexes, [Pd(S2X)2] (X = COMe (1), COiPr (2)) and η3-allylpalladium complexes with xanthate ligands, [(η3-CH2C(CH3)CR2)Pd(S2X)] (R = H, X = COMe (3); R = H, X = COEt (4); R = H, X = COiPr (5); R = CH3, X = COMe (6)), have been investigated. The crystal structures of [Pd(S2X)2] (X = COMe (1), CoiPr (2)) and [(η3-CH2C(CH3)CH2)Pd(S2COMe)] (3) have been established by single crystal X-ray diffraction analysis. The complexes, 1, 2 and 3 all contain a square planar palladium(II) centre. In the allyl complex 3, this is defined by the two sulfurs of the xanthate and the outer carbons of the 2-methylallyl ligand, while in the complexes, 1 and 2 it is defined by the four sulfur atoms of the xanthate ligand. Thermogravimetric studies have been carried out to evaluate the thermal stability of η3-allylpalladium(II) analogues. The complexes are useful precursors for the growth of nanocrystals of PdS either by furnace decomposition or solvothermolysis in dioctyl ether. The solvothermal decomposition of complexes in dioctyl ether gives a new metastable phase of PdS which can be transformed to the more stable tetragonal phase at 320 °C. The nanocrystals obtained have been characterized by PXRD, SEM, TEM and EDX.  相似文献   

15.
For N-(thio)phosphorylthioureas of the common formula RC(S)NHP(X)(OiPr)2HLI (R = N-(4′-aminobenzo-15-crown-5), X = S), HLII (R = N-(4′-aminobenzo-15-crown-5), X = O), HLIII (R = PhNH, X = S), HLIV (R = PhNH, X = O), and (N,N′-bis-[C(S)NHP(S)(OiPr)2]2-1,10-diaza-18-crown-6) H2LV, salts LiLI,III,IV, NaLIIV, KLIIVM2LV (M = Li+, Na+, K+), Ba(LI,III,IV)2, and BaLV have been synthesized and investigated. Compounds NaLI,II quantitatively drop out as a deposit in ethanol medium, allowing the separation of Na+ and K+ cations. This effect is not displayed for the other compounds. The crystal structures of HLIII and the solvate of the composition [K(Me2CO)LIII] have been investigated by X-ray crystallography.  相似文献   

16.
The platinum(II) complex [PtMe2(bpy)] (bpy = 2,2′-bipyridine) reacted with a large excess of dihaloalkanes X(CH2)nX (n = 1, X = Cl; n = 4, X = Br) to form the platinum(IV) complexes [PtMe2X{(CH2)nX}(bpy)] (n = 1, X = Cl, 1a; n = 4, X = Br, 1b). The reaction of complexes 1a and 1b with SnBr2 resulted in insertion of SnBr2 into Pt–X (X = Cl, Br) bond to afford the trihalostannyl complexes [PtMe2(SnBr2X){(CH2)nX}(bpy)] (n = 1, X = Cl, 2a; n = 4, X = Br, 2b). The synthesis of such trihalostannylplatinum(IV) complexes is reported for the first time. The complex 2a was decomposed in CH2Cl2 solution and single crystals of [PtBr2(bpy)] (3a) were obtained. The X-ray structure determination of 3a revealed a new polymorphic form of [PtBr2(bpy)]. The molecules undergo a remarkable stacking along the b-axis to form a zigzag Pt?Pt?Pt chain containing both short (3.799 Å) and long (5.175 Å) Pt?Pt separations through the crystal. The crystal structure is compared to that of the yellow modification of [PtBr2(bpy)].  相似文献   

17.
The synthesis of new organotin compounds of general formula Tip2SnRR′ (Tip = 2,4,6-triisopropylbenzene; R = R′ = CH3 (1); R = R′ = CHCH2 (2); R = CH2Ph, R′ = Br (3); R = R′ = CH2CHCH2 (4)) is described herein. The compounds have been characterized by 1H, 13C, 119Sn NMR, mass spectroscopy and elemental analysis. Characterization by single-crystal X-ray diffraction analysis has been obtained for compounds 2, 3 and 4. The reactivity with ionizing agents has been studied by NMR spectroscopy. Compounds 2 and 4 underwent alkyl abstraction by [(CH3CH2)3Si]+[B(C6F5)4] affording stable cationic species (2a, 4a). For the cationic specie 4a a π-interaction of the benzyl group to the metal centre was recognized by solution NMR studies. A cationic species (3a) was generated from compound 3 using AgSbF6 as ionizing agent. The cationic species (2a, 3a) exhibited moderate activity as initiator in the cationic polymerization of 1,4-butadiene and good activity in the ring opening polymerization (ROP) of propylene oxide and ε-caprolactone.  相似文献   

18.
A series of five gold(I) halide complexes with the two isomeric methoxy-substituted triarylphosphines, tris(2-methoxyphenyl)phosphine [P(oanis)3], [AuP(oanis)3X] [for X = Cl, (1); X = Br, (2) and X = I, (3)] and tris(4-methoxyphenyl)phosphine [P(panis)3], [AuP(panis)3X] [for X = Br (4) and X = I (5)] have been synthesized and characterized by single crystal X-ray diffraction and solution 31P{1H} NMR spectroscopy. The structure determinations confirm the expected presence of linear two-coordination about the gold centres in all five complexes with bond distance and angle data typical of this type of compound [Au–P, 2.239(2)–2.259(3) Å; Au–Cl, 2.294(2) Å; Au–Br, 2.385(2)–2.402(2) Å; Au–I, 2.546(1)–2.554(1) Å; P–Au–X; 175.3(1)–180°]. All analogues except the iodo complex 5 crystallize with one complex molecule in the crystallographic asymmetric unit. The bromo and iodo complexes 2 and 3 constitute a trigonal isomorphous set while the bromo complex 4 is also isomorphous with the previously determined chloro complex [AuP(panis)3Cl]. The 2-methoxy analogues are stabilized by significant methoxy-O?Au interactions.  相似文献   

19.
The reaction of mercury(II) halides with 1,2-bis(diphenylphosphino)ethane monoxide (dppeO) in 1:1 molar ratio yielded P,O-coordinated polymers having the empirical formula [HgX2(dppeO)]n [X = Cl (1), Br (2), I (3)]. In contrast, the reaction between the same reactants in a 1:2 molar ratio yielded the P, P-coordinated monomeric complexes, HgX2(dppeO)2[X = Cl (4), Br (5), I (6)]. The structures of 2, 3, 4 and 5 have been characterized crystallographically. The results indicate that the geometry around the mercury atom in each of these molecules is tetrahedral with considerable distortion. The 31P NMR spectra of the 1:1 complexes indicate the dissociation of the Hg–O bond in solution.  相似文献   

20.
A mononuclear ruthenium complex [Ru(bpy)2(bpp)](PF6) (1) and its halogenated and nitro derivatives [Ru(bpy)2(Xbpp)](PF6) (bpy = 2,2′-bipyridine; bpp = 3,5-bis(2-pyridyl)pyrazole; X = Cl, 2; X = Br, 3; X = I, 4; X = NO2, 5) have been synthesized and characterized by 1H NMR, 13C NMR, HRMS, elemental analysis. Complexes 25 have been further confirmed by X-ray diffraction. Their UV–Vis and emission spectroscopies, electrochemical measurements and acid–base properties are described. The results presented here reveal that the introduction of Cl, Br, I and NO2 groups to the coordinated bpp ligand makes the absorption and emission maxima of the parent complex 1 blue-shifted, the oxidation potential of the RuII/RuIII couple increased and the pKa value decreased obviously. In addition, significant quenching of the emission by these groups is also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号