首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boron-doped diamond electrodes covered with a nanostructured Pt nanoparticle-polyaniline composite have been fabricated and employed as sensitive amperometric sensors with low detection limit. A highly conductive boron-doped diamond thin film (BDD) was prepared by chemical vapor deposition, and its morphology was characterized by scanning electron microscopy and transmission electron microscopy. The nanostructured composite layer was grown on the BDD electrode by electrochemical deposition of polyaniline and Pt nanoparticles. Glucose oxidase (GOx) was then adsorptively immobilized on the modified BDD electrode. The biosensor displays a large surface area, high catalytic activity of the Pt nanoparticles, efficient electron mediation through the conducting polymer, and low background current of the electrode. The biosensor exhibits an excellent response to glucose, with a broad linear range from 5.9 μM to 0.51 mM, a sensitivity of 5.5 μA·mM?1, a correlation coefficient (R) of 0.9947, and a detection limit of 0.10 μM. The apparent Michaelis-Menten constant (K M app ) and the maximum current density of the electrode are 4.1 mM and 0.021 mA, respectively. This suggests that the immobilized GOx possesses a higher affinity for glucose at the lower K M app , and that the enzymatic reaction rate constitutes the rate-limiting step of the response.  相似文献   

2.
三种碳基电极材料的电化学性质对比研究(英文)   总被引:1,自引:0,他引:1  
对硼掺杂纳米金刚石(BDND),硼掺杂微米金刚石(BDMD)和玻碳(GC)电极的电化学性质做了对比研究.利用扫描电子显微镜表征了BDMD和BDND电极,其表面粒子大小分别为1-5μm和20-100nm.利用Raman光谱对两种金刚石薄膜的成分进行了表征,结果表明利用热丝化学气相沉积法得到了高质量的BDND和BDMD薄膜.采用0.5mol·L-1H2SO4溶液测定了三种电极的电化学窗口,BDND和BDMD电极的电化学窗口分别为3.3和3.0V,远比GC电极(2.5V)的要宽.[Fe(CN)6]3-/[Fe(CN)6]4-溶液的循环伏安和交流阻抗测定表明,在BDND、BDMD和GC电极上的峰间距(△Ep)分别为73、92和112mV,且其电子传递电阻(Ret)分别为(98±5)、(260±19)和(400±25)Ω.我们也研究了0.1mmol·L-1双酚A在三种电极上的电化学氧化行为.上述的电化学测定结果表明,两种金刚石电极均比GC电极表现出了更宽的电化学窗口、更好的电化学可逆性质、更快的电子传递速度和更高的电化学稳定性,更为重要的是与BDMD相比BDND的电化学性质有进一步的提高.  相似文献   

3.
The concept of non-diamond sp2 impurity states as charge transfer mediators on boron-doped diamond (BDD) surface was suggested as an explanation for the electrochemical behavior of synthetic diamond based electrodes. In order to verify this concept, graphite particles (sp2) were deposited on diamond electrodes (sp3) by mechanical abrasion. The behavior of the so prepared diamond–graphite composite electrodes were compared with those of as-grown (BDDag) and those after mild anodic polarization (BDDmild).Outer-sphere electron transfer processes such as ferri/ferrocyanide (Fe(CN)6III/II) and inner-sphere charge transfer reactions such as 1,4-benzoquinone/hydroquinone (Q/H2Q) were chosen in order to investigate the electrochemical properties of these composite electrodes. Both redox systems became more reversible as the graphite (sp2) loading increased. A strong analogy existed between as-grown diamond electrodes and diamond–graphite composite electrodes.Finally a model is proposed which describes the BDD electrode surface as a diamond matrix in which non-diamond (sp2) impurity states are dispersed. These non-diamond sp2 states on BDD surface acts as charge mediators for both inner-sphere and outer-sphere reactions.  相似文献   

4.
The electrochemical behavior of different redox systems and detection of catechol were performed on the as‐grown boron‐doped diamond (BDD) electrodes and the nanograss array BDD. Compared with as‐grown BDD, the electron transfer on the nanograss array BDD surface became slower toward the negatively charged Fe(CN)63?, whereas changed little toward the positively charged Ru(NH3)63+. The nanograss array BDD showed higher electrocatalytic activity toward the catechol detection than did the as‐grown BDD. Good linearity was observed for a concentration range from 5 to 100 μM with a sensitivity of 719.71 mA M?1 cm?2 and a detection limit of 1.3 μM on the nanograss array BDD.  相似文献   

5.
The electrochemical oxidation of ascorbic acid (AA) and serotonin (5-HT) at a boron-doped diamond (BDD) electrode modified with poly(N,N-dimethylaniline) (PDMA) has been studied. The oxidation potentials of 5-HT and AA overlapped after mixing of the two chemicals, due to interference of AA at the bare BDD electrode. However, after modifying the BDD electrode with a cationic polymer (PDMA), the oxidation peaks of 5-HT and AA were separated. PDMA-coated BDD electrodes can be used for simultaneous detection of these species.  相似文献   

6.
The paper reports on the electrochemical study of heavily boron-doped diamond (BDD) in aqueous media. Cyclic voltammetry and Mott-Schottky analysis were used to evaluate the influence of the surface termination on the electrochemical properties of BDD electrodes. The behavior of aminated BDD (NH2–BDD) interfaces, prepared from hydrogen-terminated BDD using NH3 plasma and from photochemically oxidized BDD (HO–BDD) using 3-aminopropyltrimethoxysilane (APTMES), are investigated and compared to those of H–BDD and HO–BDD. While H–BDD and HO–BDD electrodes show classical semiconductor behavior, amine-terminated BDD interfaces exhibit metallic behavior at pH < 10 and a semiconductor behavior at more basic pH.  相似文献   

7.
The electrochemical analysis of tetracycline was investigated using nickel-implanted boron-doped diamond thin film electrode by cyclic voltammetry and amperometry with a flow injection system. Cyclic voltammetry was used to study the electrochemical oxidation of tetracycline. Comparison experiments were carried out using as-deposited boron-doped diamond thin film electrode (BDD). Nickel-implanted boron-doped diamond thin film electrode (Ni-DIA) provided well-resolved oxidation irreversible cyclic voltammograms. The current signals were higher than those obtained using the as-deposited BDD electrode. Results using nickel-implanted boron-doped diamond thin film electrode in flow injection system coupled with amperometric detection are presented. The optimum potential for tetracycline was 1.55 V versus Ag/AgCl. The linear range of 1.0 to 100 microM and the detection limit of 10 nM were obtained. In addition, the application for drug formulation was also investigated.  相似文献   

8.
“Electroless” oxidation, at room temperature, of boron-doped diamond (BDD) films with oxidizing agents as Ce4+, MnO4?, H2O2 or S2O82? is an efficient way to transform hydrogen terminations (C-H) into oxygen ones (C-O). To investigate the oxidation mechanism of diamond surfaces through these open current potential (OCP) processes, we study in the present work the reduction mechanisms of the different oxidizing agents at BDD surfaces. Current-voltage measurements were performed using a rotating disk electrode of diamond immersed in a solution containing one of the species. Two different mechanisms were evidenced: an electrochemical for Ce4+ and MnO4? and a chemical one based on the production of radicals under light exposure for H2O2 and S2O82?.  相似文献   

9.
The electrode properties of boron-doped diamond thin films grown on Ti substrates by a hot-filament chemical vapor deposition technique are evaluated. The Ti substrate surface modifying conditions are devised, involving the surface roughening, annealing, and etching, which effectively improve the diamond electrode properties. The preetching of the Ti substrate produces the titanium hydride layer that can affect the boron-doped diamond film growth significantly. The substrate roughened surface obviously improved the diamond film adhesion and reduced the inner stress. The electrodes reveal minimal background current and better stability. A wider potential window, up to 3 V, is observed for the boron-doped diamond on the etched/annealed samples. The electrochemical activity of the electrodes in the Fe(CN) 6 3-/4- redox system somewhat increases with increasing surface roughness. The apparent increase in the reversibility of the reaction may be explained by the decrease in the true current density. Suitability of the Ti-based boron-doped diamond electrodes for electroanalytical applications is exemplified by sensing the trace metal ions, such as Hg2+ and Pb2+.__________From Elektrokhimiya, Vol. 41, No. 4, 2005, pp. 387–396.Original English Text Copyright © 2005 by Pleskov, Evstefeeva, Krotova, Lim, Chu, Ralchenko, Vlasov, Kononenko, Varnin, Teremetskaya, Shi.This article was submitted by the authors in English.  相似文献   

10.
The paper reports on the fabrication and electrochemical investigation of boron-doped diamond nanowires (BDD NWs) electrodes. The nanowires were obtained directly from highly doped polycrystalline diamond substrates using reactive ion etching (RIE) with oxygen plasma. The technique does not require any complicated processing steps such as mask deposition or template removal. The influence of the surface state on the electrochemical characteristics is discussed. The interface with the most favourable electrochemical response is investigated for the detection of tryptophan using differential pulse voltammetry. A detection limit of 5 × 10?7 M was obtained on oxidized BDD NWs, as compared to 1 × 10?5 M recorded on planar oxidized boron-doped diamond interfaces.  相似文献   

11.
High faradaic efficiencies can be achieved in the production of formic acid (HCOOH) by metal electrodes, such as Sn or Pb, in the electrochemical reduction of carbon dioxide (CO2). However, the stability and environmental load in using them are problematic. The electrochemical reduction of CO2 to HCOOH was investigated in a flow cell using boron‐doped diamond (BDD) electrodes. BDD electrodes have superior electrochemical properties to metal electrodes, and, moreover, are highly durable. The faradaic efficiency for the production of HCOOH was as high as 94.7 %. Furthermore, the selectivity for the production of HCOOH was more than 99 %. The rate of the production was increased to 473 μmol m?2 s?1 at a current density of 15 mA cm?2 with a faradaic efficiency of 61 %. The faradaic efficiency and the production rate are almost the same as or larger than those achieved using Sn and Pb electrodes. Furthermore, the stability of the BDD electrodes was confirmed by 24 h operation.  相似文献   

12.
The amperometric determination of chemical oxygen demand (COD) reported by Quan Xie??s group (Electrochem Commun 9:2281, 14), was a rapid, green and simple COD evaluation method. This work focused on testing and verifying this method by using a home-made boron-doped diamond (BDD) film as anode and optimizing the experiment conditions. The BDD thin film electrode was employed as anode and the electrochemical process was run with different experimental parameters including counter electrode, electrode gap, applied potential, electrolyte pH, and temperature. Standard samples were determined in the optimum conditions, a linear range of 19.2?C11,600?mg l?1 COD and a low detection limit of 0.192?mg l?1 COD were well established with the present approach. The COD value of the simulated organic wastewater determined by this method agreed well with the standard dichromate method, and it showed good accuracy, stability, and reproducibility.  相似文献   

13.
《Electroanalysis》2004,16(21):1777-1784
The surface of boron‐doped diamond (BDD) electrode is modified by the polymer film for the first time. The cationic polymer film of N,N‐dimethylaniline (DMA) is electrochemically deposited on BDD electrode surface. This polymer (PDMA) film‐coated BDD electrode is used as a sensor which selectively detect dopamine (DA) in the presence of ascorbic acid (AA). This electrode also can detect both DA and its metabolite, 3,4‐dihydroxy phenyl acetic acid (DOPAC) in the presence of AA in the range of the physiological concentrations of these species. Favorable ionic interaction (i.e., electrostatic attraction) between the PDMA film and AA or DOPAC lowers their oxidation potentials and enhances the current response for AA and DOPAC compared to that at the bare electrode. The PDMA film also shows a hydrophobic interaction with DA and DOPAC. In cyclic voltammetric measurements, the PDMA film‐coated electrode can successfully separate the oxidation potentials for AA and DA coexisting in the same solution and the separation is about 200 mV. AA oxidizes at more negative potential than DA. In square‐wave voltammetry, the sensitivity of the PDMA film‐coated BDD electrode for DA in the presence of higher concentration of AA is higher than that of the PDMA film‐coated glassy carbon electrode. The hydrodynamic amperometric experiments confirm that the oxidation of AA is not affected by the oxidized product of DA and vice versa. So, unlike the bare electrode the catalytic oxidation of AA by the oxidized DA is eliminated at the PDMA film‐coated BDD electrode. The sensitivities of the modified electrode for AA, DA and DOPAC, which are present in the same solution with their physiological concentration ratios, are calculated to be 0.070, 0.363 and 0.084 μA μM?1, respectively. The modified electrode exhibits a stable and sensitive response to DA.  相似文献   

14.
Nanostructured NiS thin film was prepared by a one‐step electrodeposition method and the structural, morphological characteristics of the as‐prepared films were analyzed by X‐ray diffractometry (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X‐ray analysis (EDAX). The electrocatalytic activity of NiS thin film towards glucose oxidation was investigated by fabricating a non‐enzymatic glucose sensor and the sensor performance was studied by cyclic voltammetry (CV) and amperometry. The fabricated sensor showed excellent sensitivity and low detection limit with values of 7.43 μA μM ?1 cm?2 and 0.32 μM , respectively, and a response time of <8 s.  相似文献   

15.
Li4Ti5O12 thin films were prepared by solution deposition followed by rapid thermal annealing (RTA). The structural and electrochemical properties of the film were comparatively studied with the one prepared by conventional furnace annealing (CFA) through X-ray diffraction, scanning electron microscopy, cyclic voltammetry, galvanostatic lithium insertion–extraction experiments, and electrochemical impedance spectroscopy. The results show that the film prepared by RTA is homogeneous, crack-free, and pure spinel phase, and its grain size is smaller than that of the film prepared by CFA. The lithium extraction capacity of the film prepared by RTA is 59.5 μAh cm?2 μm?1, which is higher than 55.9 μAh cm?2 μm?1 of the film prepared by CFA. The capacity loss of the film prepared by RTA after being cycled 50 times is 3.1 %, which is 3.2 % lower than that of 6.3 % for the film prepared by CFA.  相似文献   

16.
This work demonstrates gold nanoparticles (AuNPs)/functionalized multiwalled carbon nanotubes (f‐MWCNT) composite film modified gold electrode via covalent‐bonding interaction self‐assembly technique for simultaneous determination of salsolinol (Sal) and uric Acid (UA) in the presence of high concentration of ascorbic acid (AA). In pH 7.0 PBS, the composite film modified electrode exhibits excellent voltammetric response for Sal and UA, while AA shows no voltammetric response. The oxidation peak current is linearly increased with concentrations of Sal from 0.24–11.76 μmol L?1 and of UA from 3.36–96.36 μmol L?1, respectively. The detection limits of Sal and UA is 3.2×10?8 mol L?1 and 1.7×10?7 mol L?1 , respectively.  相似文献   

17.
A method using flow injection (FI) with amperometric detection at anodized boron-doped diamond (BDD) thin films has been developed and applied for the determination of tetracycline antibiotics (tetracycline, chlortetracycline, oxytetracycline and doxycycline). The electrochemical oxidation of the tetracycline antibiotics was studied at various carbon electrodes including glassy carbon (GC), as-deposited BDD and anodized BDD electrodes using cyclic voltammetry. The anodized BDD electrode exhibited well-defined irreversible cyclic voltammograms for the oxidation of tetracycline antibiotics with the highest current signals compared to the as-deposited BDD and glassy carbon electrodes. Low detection limit of 10 nM (signal-to-noise RATIO = 3) was achieved for each drug when using flow injection analysis with amperometric detection at anodized BDD electrodes. Linear calibrations were obtained from 0.1 to 50 mM for tetracycline and 0.5–50 mM for chlortetracycline, oxytetracycline and doxycycline. The proposed method has been successfully applied to determine the tetracycline antibiotics in some drug formulations. The results obtained in percent found (99.50–103.01%) were comparable to dose labeled.  相似文献   

18.
The electrochemical oxidation of homocysteine was studied at as-deposited and anodized (oxidized) boron-doped diamond (BDD) thin film electrodes with cyclic voltammetry, flow injection analysis and high-pressure liquid chromatography with amperometric detection. At anodized boron-doped diamond electrodes, highly reproducible, well-defined cyclic voltammograms for homocysteine oxidation were obtained in acidic media, while as-deposited diamond did not provide a detectable signal. In alkaline media, however, the oxidation response was obtained both at as-deposited and anodized diamond electrodes. The potential sweep rate dependence of homocysteine oxidation (peak currents for 1 mM homocysteine linearly proportional to v(1/2), within the range of 0.01 to 0.3 V s(-1)) indicates that the oxidation involves a diffusing species, with negligible adsorption on the BDD surface at this concentration. In the flow system, BDD exhibited a highly reproducible amperometric response, with a peak variation less than 2%. An extremely low detection limit (1 nM) was obtained at 1.6 V vs. Ag/AgCl. In addition, the determination of homocysteine in a standard mixture with aminothiols and disulfide compounds by means of isocratic reverse-phase HPLC with amperometric detection at diamond electrodes has been investigated. The results showed excellent separation, with a detection limit of 1 pmol and a linear range of three orders of magnitude.  相似文献   

19.
金刚石薄膜电化学   总被引:7,自引:0,他引:7  
金刚石由于其特殊的物理与化学性质,早在几百年前就吸引了人们对它的关注.化学气相沉积(chemical vapor deposition,CVD)法制备的高掺杂硼复合多晶金刚石薄膜,为金刚石薄膜在电化学中的应用开辟了新的领域.作为新型碳素电极材料,高掺杂硼复合多晶金刚石薄膜具有许多目前使用的电极材料所不可比拟的优异特性如:宽电化学势窗,低残留电流,极好的电化学稳定性以及表面不易被污染等.本文综述了高掺杂硼复合多晶金刚石薄膜电极在电化学中的几个重要应用,包括电分析、电合成及电化学法处理废水等.  相似文献   

20.
朱小红  林祥钦 《中国化学》2009,27(6):1103-1109
用循环伏安法(CV)选择不同电位区间来电聚合烟酰胺(NA)得到了两种聚合物膜修饰电极:poly-niacinamide/GCE (poly-NA/GCE)和poly- nicotinic acid /GCE (poly-NC/GCE)。这两电极都具有显著电化学催化作用,能明显地降低多巴胺(DA)、尿酸(UA)和抗坏血酸(AA)的氧化过电位,并在混合溶液中使这些物质的氧化峰电位距离足够大,可进行三物质的同时测定。poly-NC/GCE的电催化性能更好一些,用差分脉冲伏安法(DPV)测定抗坏血酸,线性范围为75–3000 µmol L-1,电流灵敏度为5.6 mA•L•mol-1;测定多巴胺,线性范围为0.37 – 16 µmol L-1,电流灵敏度为1140 mA•L•mol-1; 测定尿酸,线性范围为0.74 – 230 µmol L-1,电流灵敏度为102 mA•L•mol-1。该电极具有很高的灵敏度、选择性和抗污染能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号