首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetracyclines (TCs) form a group of bacteriostatic antibiotics with closely related structures and similar chemical and physicochemical properties. They are widely employed as therapeutics in human and veterinary medicine. Here, we introduce the combination of UV spectroscopic detection of high-performance thin-layer chromatography (HPTLC)-separated TCs with direct analysis on solid phase using infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry (IR-MALDI-o-TOF-MS). Normal silica gel phase- and water-wettable hybrid C18 reversed phase layers (RP-18W) both allowed HPTLC separation and sensitive UV spectroscopic detection followed by MS analysis of distinct TCs bands using the liquid matrix glycerol. The novel approach of direct IR-MALDI-o-TOF-MS analysis resulted in the unequivocal identification of four structurally different TCs employed in this study, and linear calibration curves were produced for analyte amounts from 20 ng to 1 μg. MS analysis of TCs from RP-18W HPTLC plates was found to be superior when compared to the spectra acquired from the silica gel layer. Ionic analytes obtained from the RP-18W surface are mainly detected as protonated species of high abundance accompanied by a reduced formation of adducts as well as background ions arising from the matrix or the stationary phase. This results in decreased complexity of the spectra and enhanced sensitivity of the combinatorial method. An approximate detection limit of 5 ng of individual TCs in mixtures by combining RP-18W HPTLC with IR-MALDI-o-TOF-MS offers a novel timely and cost-efficient method for tracing TCs.
Figure
UV chromatograms recorded at l = 360 nm from unstained TCs separated on silica gel layers without (a) and with (b) EDTA plate pretreatment. The corresponding Fast Blue B stains are shown in the insets. For chromatographic separation 5 µg of individual TCs were applied. Lanes a OTC, lanes b CTC, lanes c TC, lanes d DC  相似文献   

2.
A selective and accurate LC/MS/MS method for the simultaneous determination of chlortetracycline (CTC), oxytetracycline (OTC), tetracycline (TC), and doxycycline (DC) in animal feeds was developed. Samples were extracted with Na2EDTA-McIlvaine buffer and further purified with Oasis HLB SPE columns. The purified extract was separated on an Xbridge C18 column and detected by LC/MS/MS with positive electrospray ionization in the multiple reaction monitoring mode. This method provided average recoveries of 80.9 to 119.5%, with CVs of 1.7 to 9.8% in the range of 0.5 to 50 mg/kg CTC, OTC, TC, and DC in feeds, except the average recovery of CTC was 76.0%, with a CV of 14.6% in pig feed spiked with 0.5 mg/kg CTC. The linear ranges for the four TCs determined by LC/MS/MS ranged from 0.005 to 2.5 microg/mL with a linear correlation coefficient (R2) >0.99. The LOD and LOQ for CTC, OTC, TC, and DC in pig and poultry feeds ranged from 0.003 to 0.02 and 0.01 to 0.05 microg/g, respectively. The method was successfully applied for the analysis of 30 real feed samples, and no illegal use was detected.  相似文献   

3.
We report on a fluorescent assay for oxytetracycline (OTC) using a fluorescein-labeled long-chain aptamer assembled onto reduced graphene oxide (rGO). The π-π stacking interaction between aptamer and rGO causes the fluorescence of the label to be almost completely quenched via energy transfer so that the system has very low background fluorescence. The addition of OTC leads to the formation of G-quadruplex OTC complexes and prevents the adsorption of labeled aptamer on the surface of rGO. As a result, fluorescence is restored, and this effect allows for a quantitative assay of OTC over the 0.1–2 μM concentration range and with a detection limit of 10 nM. This method is simple, rapid, selective and sensitive. It may be applied to other small molecule analytes by applying appropriate aptamers.
Figure
A simple and sensitive fluorescent assay for oxytetracycline detection based on the different interaction intensity of fluorescein-labeled long-chain aptamer, G-quadruplex-OTC complex with reduced graphene oxide was designed.  相似文献   

4.
Platinum nanoparticles (Pt-NPs) with sizes in the range from 10 to 30 nm were synthesized using protein-directed one-pot reduction. The model globular protein bovine serum albumin (BSA) was exploited as the template, and the resulting BSA/Pt-NPs were studied by transmission electron microscopy, energy dispersive X-ray spectroscopy, and resonance Rayleigh scattering spectroscopy. The modified nanoparticles display a peroxidase-like activity that was exploited in a rapid method for the colorimetric determination of hydrogen peroxide which can be detected in the 50 μM to 3 mM concentration range. The limit of detection is 7.9 μM, and the lowest concentration that can be visually detected is 200 μM.
Figure
Pt-NPs were synthesized using BSA-directed one-pot reduction and BSA/Pt-NPs composite can effectively catalyze the oxidation of TMB producing blue solution in the presence of H2O2.  相似文献   

5.
Macroporous reversed-phase (mRP) chromatography was successfully used to develop an accurate and precise method for total protein in serum. The limits of detection (0.83 μg, LOD) and quantification (2.51 μg, LOQ) for the mRP method are comparable with those of the widely used micro BCA protein assay. The mRP method can be used to determine the total protein concentration across a wide dynamic range by detecting chromatographic peaks at 215 nm and 280 nm. The method has the added advantage of desalting and denaturing proteins, leading to more complete digestion by trypsin and to better LC–MS–MS identification in shotgun proteomics experiments.
Figure
Simultaneous Serum Desalting and Total Protein Determination with Macroporous Reversed-Phase Chromatography: calibration plots  相似文献   

6.
Polymer monoliths in capillary (100 μm i.d.) and polypropylene pipette tip formats (vol: 20 μL) were modified with gold nano-particles (AuNP) and subsequently used for flow-through catalytic reactions. Specifically, methacrylate monoliths were modified with amine-reactive monomers using a two-step photografting method and then reacted with ethylenediamine to provide amine attachment sites for the subsequent immobilisation of 4 nm, 7 nm or 16 nm AuNP. This was achieved by flushing colloidal suspensions of gold nano-particles through each aminated polymer monolith which resulted in a multi-point covalent attachment of gold via the lone pair of electrons on the nitrogen of the free amine groups. Field emission scanning electron microscopy and scanning capacitively coupled conductivity detection was used to characterise the surface coverage of AuNP on the monoliths. The catalytic activity of AuNP immobilised on the polymer monoliths in both formats was then demonstrated using the reduction of Fe(III) to Fe(II) by sodium borohydride as a model reaction by monitoring the reduction in absorbance of the hexacyanoferrate (???) complex at 420 nm. Catalytic activity was significantly enhanced on monoliths modified with smaller AuNP with almost complete reduction (95 %) observed when using monoliths agglomerated with 7 nm AuNPs.
Figure
Gold nano-particles were immobilised upon a porous polymer monolith and used for the micro-scale catalytic reduction of Fe (III) to Fe (II) in flow-through mode  相似文献   

7.
Green biosynthesis of nanoparticles and their applications in sensor field is of great interest to the researchers. We report herein a simple green approach for the synthesis of silver nanoparticles (Ag-NPs) using Acacia nilotica Willd twig bark and its application for the detection of 4-nitro phenol (4-NP). The synthesized Ag-NPs were characterized by Transmission electron microscopy, X-ray diffraction and elemental analysis. The size of synthesized Ag-NPs was in the range of 10–50 nm. The Ag-NPs modified electrode shows a high sensitivity and selectivity towards the sensing of 4-NP. The fabricated modified electrode shows a low detection limit of 15 nM on the wider linear response range from 100 nM to 350 μM with the sensitivity of 2.58?±?0.05 μAμM?1 cm?2. In addition, the fabricated sensor shows good repeatability and reproducibility.
Figure
The schematic representation of the fabrication of Ag-NPs and application of 4-nitrophenol sensing  相似文献   

8.
A method based on ultrasound-assisted emulsification–microextraction (USAEME) was proposed in this contribution for the determination of ethyl carbamate (EC) in alcoholic beverages using gas chromatography coupled to triple quadrupole mass spectrometry. To achieve the determination of EC in alcoholic beverages, the influences on the extraction efficiency of type and volume of extraction solvent, temperature, ionic strength, alcohol content, and extraction time were studied, once the extraction solvent had been selected. The optimized conditions were 200.0 μL of chloroform at 30 °C during 5 min with 15 % (m/v) sodium chloride addition. The detection limit, relative standard deviations, linear range, and recoveries under the optimized conditions were 0.03 μg L?1, 4.2–6.1 %, 0.1–50.0 μg L?1, and 80.5–87.9 %, respectively. Moreover, the feasibility of the present method was also validated by real samples. To the best of our knowledge, this is the first time that USAEME has been applied to determine a strongly hydrophilic compound in alcoholic beverages.
Figure
Schematic diagram of EC preconcentration from alcoholic beverages by USAEME. (a) Sample solution containing EC and 15 % (m/v) NaCl, (b) addition of 200 μL of extraction solvent (chloroform) into sample solution, (c) manual shaking 10 s for premix, (d) horizontal sonication emulsification at 30 °C during 5 min, (e) phase separation after centrifugation, and (f) enlarged view of resulting organic phase  相似文献   

9.
Films consisting of pristine multi-walled carbon nanotubes (MWCNTs) and nitrogen-doped MWCNTs (N-MWCNTs) were fabricated by means of chemical vapor deposition and chemically decorated with gold nanoparticles (AuNPs). Optical microscopy and image analysis reveal that the deposited AuNPs have diameters of 50–200 nm and 100–400 nm, respectively. The AuNP-modified films of MWCNTs and of N-MWCNTs were initially investigated with respect to their response to the ferro/ferricyanide redox system. The N-MWCNTs/AuNPs exhibit lower detection limit (0.345 μM) for this redox system compared to that of MWCNTs/AuNPs (0.902 μM). This is probably due to the presence of nitrogen that appears to enhance the electrocatalytic activity of MWCNTs. The findings demonstrate that the electrochemical responses of both films are distinctly enhanced upon deposition of AuNPs on their surfaces. The detection limits of MWCNTs/AuNPs and N-MWCNTs/AuNPs systems are lower by about 43 % and 27 %, respectively, compared to films not modified with AuNPs. The electrocatalytic activity of the films towards the oxidation of ascorbic acid (AA), uric acid (UA), and dopamine (DA) was studied. The findings reveal that N-MWCNTs/AuNPs represent a powerful analytical tool that enables simultaneous analysis of AA, UA, and DA in a single experiment.
Figure
Films consisting of pristine and nitrogen-doped multi-walled carbon nanotubes were fabricated, decorated with gold nanoparticles, and their electrocatalytic activity towards oxidation of ascorbic acid, uric acid, and dopamine was investigated. An enhanced electrocatalytic activity was observed on modified nitrogen-doped carbon nanotubes, where all biomolecules can be simultaneously analyzed.  相似文献   

10.
Particles were ablated from laser desorption and inlet ionization matrix thin films with a UV laser in reflection and transmission geometries. Particle size distributions were measured with a combined scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) system that measured particles in the size range from 10 nm to 20 μm. The matrixes investigated were 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), sinapic acid (SA), 2,5-dihydroxy-acetophenone (DHAP), and 2-nitrophloroglucinol (NPG). Nanoparticles with average diameters between 20 and 120 nm were observed in both transmission and reflection geometry. The particle mass distribution was significantly different in reflection and transmission geometry. In reflection geometry, approximately equal mass was distributed between particles in the 20 to 450 nm range of diameters and particles in the 450 nm to 1.5 μm diameter range. In transmission mode, the particle mass distribution was dominated by large particles in the 2 to 20 μm diameter range. Ablation of inlet ionization matrices DHAP and NPG produced particles that were 3 to 4 times smaller compared with the other matrices. The results are consistent with ion formation by nanoparticle melting and breakup or melting and breakup of the large particles through contact with heated inlet surfaces.
?  相似文献   

11.
The reaction of hydrogen tetracholoroaurate, sodium borohydride and the diazonium compound prepared from 4-aminobenzoic acid results in the formation of gold nanocorals (Au-NCs) for the first time. Scanning electron microscopy images and transmission electron microscopy images show that the Au-NCs are composed of nanowires with a diameter of 5.3 nm. A glassy carbon electrode modified with Au-NCs is found to trigger intense electrochemiluminescence of the luminol/H2O2 system at a potential of ?0.13 V. The effect was exploited to determine H2O2 in the 0.1 to 100 μM concentration range with a 30 nM detection limit.
Figure
Gold nanocoral has been synthesized using diazonium salt chemistry for the first time. The Gold nanocoral-modified electrode show intense electrochemiluminescence at a low potential of ?0.13 V.  相似文献   

12.
We have prepared an ~1.4 μm thin hybrid film from polyurethane (PU) hydrogel and tetraethylorthosilicate (TEOS) by a sol–gel method, and have incorporated the red-luminescent ruthenium-tris-bipyridyl complex. At an optimized ratio of PU/TEOS (1.5:1; w/w) and annealing temperature (60 °C), the membrane sensor exhibits good capability to extract water from organic solvents but also can well retain the ruthenium dye. If contacted with water-containing organic solvents such as acetone or THF, both the luminescence intensity and wavelength change significantly. The response of luminescence intensity to the water fraction in organics is sigmoidal, which can be well fitted with a modified Stern-Volmer equation. The sensor works in the ranges of 0–6 % and 0–12 % (v/v) of water in acetone and THF, respectively, with detection limits of 0.13 % and 0.486 % (v/v).
Figure
A ultrathin Ru(bpy)3 2+-doped hybrid film (~1.4 μm) prepared from PU hydrogel and TEOS shows water-dependent luminescence in both intensity and emission energy when calibrated in organic solvents.  相似文献   

13.
We report on the amperometric determination of sulfite using screen-printed carbon electrodes (SPCEs) modified with gold and silver nanoparticles that were deposited on the electrode to improve the capabilities of detection. The electrode is fairly selective and responds to sulfite with an oxidation current (at 300 mV and pH 6) in the 9.80 to 83.33 μM concentration range. The precision in terms of repeatability and reproducibility is 14.4 % and 10.7 % in the case of SPCEs modified by gold nanoparticles. The method was applied to the determination of sulfite in drinking water, pickle juice and vinegar. Recoveries ranged from 96 % to 104 %.
Figure
Amperometric determination of sulfite using a sensor based on the immobilization gold nanoparticles on a disposable screen-printed carbon electrode  相似文献   

14.
We have developed a lactate biosensor based on a bionanocomposite (BNC) composed of titanium dioxide nanoparticles (TiO2-NPs), photocatalytically reduced graphene, and lactate oxidase. Graphene oxide was photochemically reduced (without using any chemical reagents) in the presence of TiO2-NPs to give graphene nanosheets that were characterized by atomic force microscopy, Raman and X-ray photoelectron spectroscopy. The results show the nanosheets to possess few oxygen functionalities only and to be decorated with TiO2-NPs. These nanosheets typically are at least 1 μm long and have a thickness of 4.2 nm. A BNC was obtained by mixing lactate oxidase with the nanosheets and immobilized on the surface of a glassy carbon electrode. The resulting biosensor was applied to the determination of lactate. Compared to a sensor without TiO2-NPs, the sensor exhibits higher sensitivity (6.0 μA mM?1), a better detection limit (0.6 μM), a wider linear response (2.0 μM to 0.40 mM), and better reproducibility (3.2 %).
?  相似文献   

15.
We report on a protocol for a simultaneous competitive immunoassay for tetracycline (TC) and chloramphenicol (CAP) on the same sensing interface. Conjugates of TC and of CAP with bovine serum albumin were first co-immobilized on a glassy carbon electrode modified with gold nanoparticles. In parallel, monoclonal anti-TC and anti-CAP antibodies were conjugated onto CdS and PbS nanoclusters, respectively. In a typical assay, the immobilized haptens and the added target analytes competed for binding to the corresponding antibodies on the nanoclusters. Subsequently, Cd(II) and Pb(II) ions are released from the surface of the corresponding nanoclusters by treatment with acid and then were detected by square wave anodic stripping voltammetry. The currents at the peak potentials for Cd(II) and Pb(II) were used as the sensor signal for TC and CAP, respectively. This multiplex immunoassay enables the simultaneous determination of TC and CAP in a single run with dynamic ranges from 0.01 to 50 ng mL?1 for both analytes. The detection limits for TC and for CAP are 7.5 pg mL?1 and 5.4 pg mL?1, respectively. No obvious nonspecific adsorption and cross-reactivity was observed in a series of analyses. Intra-assay and inter-assay coefficients of variation were less than 10 %. The method was evaluated by analyzing TC and CAP in spiked samples of milk and honey. The recoveries range from 88 % to 107 % for TC, and from 91 % to 119 % for CAP.
Figure
We developed a new multiplexed electrochemical immunoassay for simultaneous determination of tetracycline and chloramphenicol, using metal sulfide nanoclusters as recognition elements.  相似文献   

16.
We have investigated the use of a Gaussian beam laser for MALDI Imaging Mass Spectrometry to provide a precisely defined laser spot of 5 μm diameter on target using a commercial MALDI TOF instrument originally designed to produce a 20 μm diameter laser beam spot at its smallest setting. A Gaussian beam laser was installed in the instrument in combination with an aspheric focusing lens. This ion source produced sharp ion images at 5 μm spatial resolution with signals of high intensity as shown for images from thin tissue sections of mouse brain.
Figure
?  相似文献   

17.
This work describes the characterization of a solid-phase extraction (SPE) and liquid-chromatography-tandem mass spectrometry-based method for the analysis of acrylamide (AA) in complex environmental waters. The method involved the SPE of AA using activated carbon, and the AA was detected with tandem mass spectrometry after separating on an ion exclusion high-performance liquid chromatography column. The method incorporated two labeled AA standards for quantification using isotope dilution and to assess absolute extraction recovery. The method was evaluated for inter- and intra-day precision and accuracy. The method was both accurate (i.e., <30 % error) and precise (i.e., <20 % relative standard deviation), with absolute extraction recoveries averaging 37 %. The mass spectrometry provided excellent sensitivity, with instrumental limits of detection and quantitation values of 23 and 75 pg, respectively. The method detection limit was determined to be 0.021 μg/L. The analysis of AA was successfully performed in real-world samples that contained total dissolved solids concentrations ranging from 23,600 to 297,000 mg/L and AA concentrations ranging from 0.082 to 1.0 μg/L.
Figure
Product ion spectra of, from top to bottom, acrylamide, acrylamide-1-13C, and acrylamide-2,3,3-d3. The predominant peak in each spectrum was used for quantitation  相似文献   

18.
We have studied the CdTe quantum dot-induced phototransformation of 2,4-dichlorophenol (2,4-DCP) and its subsequent chemiluminescence (CL) reaction. Quantum dots (QDs) of different size and capped with thioglycolic acid were prepared and characterized by molecular spectroscopy, X-ray diffraction and transmission electron microscopy. In the presence of QDs, 2,4-DCP is photochemically transformed into a long-living light emitting precursor which can react with N-bromosuccinimide to produce CL with peak wavelengths at 475 and 550 nm. The formation of singlet oxygen during the phototransformation process was confirmed by the enhancement effect of deuterium oxide on the CL reaction and the change in the UV spectrum of a chemical trap. The CL intensity is linearly related to the concentration of 2,4-DCP in the range from 0.36 to 36 μmol L?1, and the detection limit (at 3σ) is 0.13 μmol L?1.
Figure
CdTe QDs as an alternative photosensitizer that can be applied to the phototransformation/CL detection of 2, 4-DCP.  相似文献   

19.
Li Qi  Yan Shang  Fangying Wu 《Mikrochimica acta》2012,178(1-2):221-227
We report on a colorimetric probe for the determination of Pb(II). It is based on the use of silver nanoparticles that have been functionalizd with iminodiacetic acid (IDA-Ag NPs). The absorption spectrum and solution color of IDA-Ag NPs undergo dramatic changes on exposure to Pb(II) with a new absorption peak appearing at 650 nm and a concomitant color change from yellow to green. This is assumed to result from the aggregation of IDA-Ag NPs induced by Pb(II). Under optimum conditions, there is a linear relationship between the ratio of the absorbances at 650 and 396 nm, respectively, and the concentration of Pb(II) in the 0.4 to 8.0 μM concentration range, with a detection limit of 13 nM. The method was applied to the determination of Pb(II) in tap water and urea samples, and recoveries ranged from 93.7 % to 98.6 %.
Figure
A colorimetric probe based on iminodiacetic acid-functionalized silver nanoparticles (IDA-Ag NPs) was obtained and used for determination of Pb2+. The color change from yellow to green was assumed to result from the aggregation of the NPs induced by Pb(II) ions. The assay was possessed highly selectivity to lead(II) over the other ions.  相似文献   

20.
We have developed screen–printed carbon electrodes for the determination of tyramine (Tyr) via plasma amine oxidase. The enzyme was immobilized on the carbon working electrode by cross–linking it with bovine serum albumin using glutaraldehyde. The employment of the mediator hydroxymethylferrocene lowers the working potential to +260 mV (vs. a screen–printed Ag/AgCl reference electrode). The effects of pH, potential and mediator concentration were optimized and resulted in reproducibility and repeatability values of 8.6 % and 8.7 %, respectively. Response is linear in the range from 2 to 164 μM, and the limit of detection is 2.0?±?0.18 μM. The effects of potentially interfering biogenic amines such as putrescine, cadaverine, histamine, spermine, spermidine and tryptamine were also evaluated. The biosensor was successfully applied to the determination of Tyr in cheese.
Figure
Amperometric determination of tyramine using a biosensor based on the immobilization of polyamine oxidase (PAO) enzyme on a disposable screen-printed carbon electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号