首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The development of a complete, standard analytical procedure for a quantitative use of secondary ion mass spectrometry to map the distribution in animal tissues of exogenous isotopes presents difficulties inherently related to sample preparation and preservation, as well as to the specific application being considered. We have tested in two very different cases a procedure based on the cryo-preparation of samples and calibration standards. The applications under investigation were the mapping of 10B in mouse brain tissue, with relevance to the boron neutron capture therapy, and of the perfusion tracer 99Tc in mouse heart tissue, with relevance to the study of microcirculation and cardiovascular pathologies. Scanning electron microscopy and inductively coupled mass spectrometry analysis were used as reference techniques for secondary ion mass spectrometry images and analyte measurements, respectively. Cryo-preparation of tissue sections for ion microscopy proved to be simple and efficient (in terms of structural and chemical integrity) for both brain and heart samples derived from fresh organs. This technique, however, turned out to be reliable only on the brain tissue when applied to the preparation of standards, which required chemical fixation of portions of organs. Brain and heart tissues showed a totally different response to chemical fixation, from both a structural and an analytical point of view. On the one hand, we were able to estimate a relative sensitivity factor for 10B in the cryo-sectioned brain matrix; on the other hand, even without the possibility of an absolute quantification of the 99Tc signal and notwithstanding the presence of an isobaric interference, secondary ion mass spectrometry mapping however proved to be capable to resolve the specific response of the cardiac tissue to the perfusion mechanism.  相似文献   

2.
The capabilities of time of flight secondary ion mass spectrometry (TOF-SIMS) have been recently greatly improved with the arrival in this field of polyatomic ion sources. This technique is now able to map at the micron scale intact organic molecules in a range of a thousand Daltons or more, at the surface of tissue samples. Nevertheless, this remains a surface analysis technique, and three-dimensional information on the molecular composition of the sample could not be obtained due to the damage undergone by the organic molecules during their irradiation. The situation changed slightly with the low damage and low penetration depth of the C60 fullerene ion beams. Recent promising studies have shown the possibility of organic molecular depth profiling using this kind of beams onto model samples. This possibility has been tried out directly onto a rat brain tissue section, which is the most commonly used biological tissue model in TOF-SIMS imaging method developments. The tissue surface has been sputtered with a 10 keV energy fullerene ion beam, and surface analyses were done with a 25 keV Bi3+ ion beam at regular time intervals. The total depth which was analysed was more than two microns, with total primary ion doses of more than 1016 ions cm−2. Although not in contradiction with results previously published but with much lower doses, it is found that the molecular damage remains too large, thus making molecular imaging very difficult. In addition, most of the lipids, which are usually the main observable molecules in TOF-SIMS, are concentrated close to the sample surface in the first hundreds of nanometers.  相似文献   

3.
Organic secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry can be used to produce molecular images of samples. This is achieved through ionization from a clearly identified point on a flat sample, and performing a raster of the sample by moving the point of ionization over the sample surface. The unique analytical capabilities of mass spectrometry for mapping a variety of biological samples at the tissue level are discussed. SIMS provides information on the spatial distribution of the elements and low molecular mass compounds as well as molecular structures on these compounds, while MALDI yields spatial information about higher molecular mass compounds, including their distributions in tissues at very low levels, as well as information on the molecular structures of these compounds. Application of these methods to analytical problems requires appropriate instrumentation, sample preparation methodology, and a data presentation usually in a three-coordinate plot where x and y are physical dimensions of the sample and z is the signal amplitude. The use of imaging mass spectrometry is illustrated with several biological systems.  相似文献   

4.
A skin sample from a South‐Andean mummy dating back from the XIth century was analyzed using time‐of‐flight secondary ion mass spectrometry imaging using cluster primary ion beams (cluster‐TOF‐SIMS). For the first time on a mummy, skin dermis and epidermis could be chemically differentiated using mass spectrometry imaging. Differences in amino‐acid composition between keratin and collagen, the two major proteins of skin tissue, could indeed be exploited. A surprising lipid composition of hypodermis was also revealed and seems to result from fatty acids damage by bacteria. Using cluster‐TOF‐SIMS imaging skills, traces of bio‐mineralization could be identified at the micrometer scale, especially formation of calcium phosphate at the skin surface. Mineral deposits at the surface were characterized using both scanning electron microscopy (SEM) in combination with energy‐dispersive X‐ray spectroscopy and mass spectrometry imaging. The stratigraphy of such a sample was revealed for the first time using this technique. More precise molecular maps were also recorded at higher spatial resolution, below 1 µm. This was achieved using a non‐bunched mode of the primary ion source, while keeping intact the mass resolution thanks to a delayed extraction of the secondary ions. Details from biological structure as can be seen on SEM images are observable on chemical maps at this sub‐micrometer scale. Thus, this work illustrates the interesting possibilities of chemical imaging by cluster‐TOF‐SIMS concerning ancient biological tissues. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Sections of biologic tissue obtained from laboratory rodents are prepared and analyzed by secondary ion mass spectrometry. The intensity of phosphocholine secondary ions is used to identify anatomical features of the brain from secondary ion images and to evaluate the effectiveness of procedures developed. Secondary ion emission of phosphocholine (m/z 184), is found to be abundant and its intensity is heterogeneous. Effects of sample thickness are addressed. Correspondence between conventional optical images of stained tissue and secondary ion images shows that successive ion images may be used to produce a three-dimensional map of the brain, i.e., an atlas.  相似文献   

6.
Werner  Helmut 《Mikrochimica acta》1994,114(1):107-127
The performance indicators for a quantitative analysis (random and systematic uncertainties) are defined, and their origin in SIMS (secondary ion mass spectrometry) is discussed. The different methods for quantitative SIMS analysis: calibration curve approach, implanted standard method, relative sensitivity factor (RSF) method, are discussed. Examples are given for successful quantitative SIMS analyses of epilayers, implanted depth profiles and interface (IF) impurity distribution. In conclusion, a comparison is made between SIMS and other advanced techniques for thin film analysis.  相似文献   

7.
Liquid secondary ion mass spectrometry (L-SIMS) of six new functionalized macrocycles was investigated. All six compounds yielded abundant fragment ions and protonation molecular ions [M + H](+) under L-SIMS conditions. The proposed fragmentation mechanisms were supported by high-resolution accurate mass data from Fourier transform ion cyclotron resonance mass spectrometric and MS(n) experiments on using sustained off-resonance irradiation collision-induced dissociation.  相似文献   

8.
The highly diverse chemical structures of lipids make their analysis directly from biological tissue sections extremely challenging. Here, we report the in situ mapping and identification of lipids in a freshwater crustacean Gammarus fossarum using matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) in combination with an additional separation dimension using ion mobility spectrometry (IMS). The high‐resolution trapped ion mobility spectrometry (TIMS) allowed efficient separation of isobaric/isomeric lipids showing distinct spatial distributions. The structures of the lipids were further characterized by MS/MS analysis. It is demonstrated that MALDI MSI with mobility separation is a powerful tool for distinguishing and localizing isobaric/isomeric lipids.  相似文献   

9.
We review recently developed methods for analyzing live cells and tissues in ambient conditions without the use of harsh chemical fixation or physical freezing and drying. The first method is based on laser ablation in atmospheric pressure assisted by atmospheric pressure plasma and nanomaterials such as nanoparticles and graphene to enhance laser ablation. The second method is based on secondary ion mass spectrometry imaging of live cells in solution capped with single-layer graphene to preserve intact and hydrated biological samples even under ultrahigh vacuum for secondary ion mass spectrometry bio-imaging in solution with subcellular spatial resolution. Mass spectrometry imaging of small molecules from live cells and tissues can provide an innovative molecular imaging methodology for several biomedical and material research applications.  相似文献   

10.
随着质谱技术的不断发展,对超高质量颗粒物质的分析已经成为质谱领域研究的一个重要方向.离子阱颗粒质谱(particle ion trap mass spectrometry)作为用于完整颗粒质量分析的有利工具,拓展了质谱技术在巨大颗粒物质量分析中的应用范围.本文对离子阱颗粒质谱仪器的研究进展及其在各个领域的应用进行了综述,并展望了离子阱颗粒质谱未来的发展趋势.  相似文献   

11.
徐福兴  王亮  罗婵  丁传凡 《分析化学》2011,(10):1501-1505
本研究设计了一种新型用于二次离子质谱的一次离子源及其离子光学系统.通过此一次离子源,大气压下产生的一次离子可以被加速、聚焦并传输到位于真空条件下的样品表面并电离样品得到可供质谱仪分析的二次离子.通过理论模拟结合实验系统研究了此一次离子源的主要组成部分——离子光学系统的原理、结构和性能.以电喷雾电离源为例,成功地将大气压...  相似文献   

12.
Summary A direct combination of thin-layer chromatography with secondary ion mass spectrometry (TLC/SIMS) provides a method for the quantitative analysis of thermally unstable compounds or compounds of low volatility such as nicergoline. The method is very simple and has excellent precision. The analysis was performed by using an aluminium TLC plate and a mixture of methylene chloride, acetone, and distilled water as a developing solvent. After development the portion of the plate with the nicergoline and the internal standard spots was cut off the TLC plate, and was attached to the SIMS holder directly. The amount of nicergoline was determined from the ratio of the fragment ion intensity of the nicergoline to the internal standard. The calibration curve was linear, and the detection limit was 10 ng at a signal-to-noise ratio of 5. This method should be considered for application to the determination of drugs in biological samples and also for the determination of possible impurities and decomposition products in drugs.  相似文献   

13.
We have developed a new imaging system for secondary ion mass spectrometry, including a new interface to control all functional units of the CAMECA IMS 3f instrument, especially the high voltage channel plate. Use of a 386 PC (HP Vectra RS-25) made a new 20-bit magnetic field control, a new counting board with higher dynamic range and a new sample position unit possible. A double channel plate enables us to detect single ions with a sensitive CCD camera.An Imaging Technology 151 image processor digitizes and accumulates camera data. During summation the image processor detects the brightest and darkest pixel in the channel plate picture, thus channel plate high voltage may be dynamically controlled according to the intensity of the secondary ion signal. This results in fully automatic measurement of unknown samples with large variations in the lateral and depth concentration of elements. A dynamic range for measurement of secondary ion intensities of 108 can be achieved.Software written in C controls the image processor, the channel plate high voltage and all other parts of the instrument, and has a user friendly interactive interface. To visualise multidimensional data (three dimensional distribution of more than one element) a software package was written which allows to correlate elemental distributions.  相似文献   

14.
Laser-ablation ion trap mass spectrometry (LA-ITMS) is applied for the analysis of rare-earth elements in soil samples. The target elements studied in this work were ytterbium (Yb) and samarium (Sm). The isotopic compositions of these elements were analyzed for standard samples with chip shape, the western phosphate rock sample (NIST SRM-694), and soil samples collected near our laboratory. For metal samples of Sm and Yb, isotopes of these elements as well as oxide forms were clearly identified. For the case of soil samples only a tentative assignment on the mass peaks were performed due to the complicated mass spectra that originated from the oxide forms of various rare-earth elements.  相似文献   

15.
The so‐called Storing Matter technique allows the matrix effect observed in secondary ion mass spectrometry to be successfully circumvented. We therefore investigate in this work the depth‐profiling capabilities of the Storing Matter technique with a goal of developing protocols for quantitative depth profiles. The effect of the steps involved in the Storing Matter process on the main parameters such as the depth resolution and the dynamic range is studied experimentally and by simulations. A semi‐automated process consisting of the sputter‐deposition process on a rotating collector in the Storing Matter instrument followed by a complete analysis of the collector by secondary ion mass spectrometry is defined. This protocol is applied to depth profile a B implant in Si and a Sn/Zn multilayered sample, and the results are compared with those obtained with conventional secondary ion mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This brief article provides an overview of the current state of the art in biological imaging mass spectrometry using cluster time-of-flight secondary ion mass spectrometry (TOF–SIMS). Recent and spectacular improvements in terms of sensitivity of TOF–SIMS imaging methods have allowed many biological applications to recently be successfully tested, such as mapping of lipid disorders in human muscles of a patient suffering from dystrophy, localization of surfactins after the swarming of bacteria on a surface, or lipid mapping over whole-body animal sections.  相似文献   

17.
Untargeted analyses in mass spectrometry imaging produce hundreds of ion images representing spatial distributions of biomolecules in biological tissues. Due to the large diversity of ions detected in untargeted analyses, normalization standards are often difficult to implement to account for pixel-to-pixel variability in imaging studies. Many normalization strategies exist to account for this variability, but they largely do not improve image quality. In this study, we present a new approach for improving image quality and visualization of tissue features by application of sequential paired covariance (SPC). This approach was demonstrated using previously published tissue datasets such as rat brain and human prostate with different biomolecules like metabolites and N-linked glycans. Data transformation by SPC improved ion images resulting in increased smoothing of biological features compared with commonly used normalization approaches.  相似文献   

18.
Ultra performance liquid chromatography (UPLC) when coupled to ion mobility (IMS)/orthogonal acceleration time of flight mass spectrometry is a suitable technique for analyzing complex mixtures such as the black tea thearubigins. With the aid of this advanced instrumental analysis, we were able to separate and identify different isomeric components in the complex mixture which could previously not be differentiated by a conventional high performance liquid chromatography/tandem mass spectrometry. In this study, the difference between isomeric structures theasinensins, proanthocyanidins B‐type and rutin (quercetin‐3O‐rutinoside) were studied, and these are present abundantly in many botanical sources. The differentiation between these structures was accomplished according to their acquired mobility drift times differing from the traditional investigations in mass spectrometry, where calculation of theoretical collisional cross sections allowed assignment of the individual isomeric structures. The present work demonstrates UPLC–IMS‐MS as an efficient technology for isolating and separating isobaric and isomeric structures existing in complex mixtures discriminating between them according to their characteristic fragment ions and mobility drift times. Therefore, a rational assignment of isomeric structures in many phenolic secondary metabolites based on the ion mobility data might be useful in mass spectrometry‐based structure analysis in the future. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Styrene-butadiene copolymers were analyzed by static secondary ion mass spectrometry (S-SIMS) and laser ablation Fourier transform ion cyclotron resonance mass spectrometry (LA-FTICRMS) to obtain quantitative information based on specific ions. Silver deposition was performed on polystyrene, butadiene rubber and styrene-butadiene rubber. Under these experimental conditions, new secondary ions were detected, in particular silver-cationized butadiene [M(butadiene) - Ag](+) and styrene [M(styrene) - Ag](+) monomers. In contrast, LA-FTICRMS experiments did not require pretreatment. At high laser power density, UV photons (193, 266 and 355 nm) allowed the detection of styrene and butadiene monomers at m/z 104 and 54, respectively. The use of the observed ions by SIMS or LA-FTICRMS ensures that quantitative information on the relative distribution of each monomer is obtained. However, the silver coating thickness in the SIMS experiment seems to have an important influence on the quantitative information obtained. For LA-FTICRMS experiments, the best results are obtained at a wavelength of 355 nm.  相似文献   

20.
Comprehensive metabolome analysis using mass spectrometry (MS) often results in a complex mass spectrum and difficult data analysis resulting from the signals of numerous small molecules in the metabolome. In addition, MS alone has difficulty measuring isobars and chiral, conformational and structural isomers. When a matrix-assisted laser desorption ionization (MALDI) source is added, the difficulty and complexity are further increased. Signal interference between analyte signals and matrix ion signals produced by MALDI in the low mass region (<1500 Da) cause detection and/or identification of metabolites difficult by MS alone. However, ion mobility spectrometry (IMS) coupled with MS (IM-MS) provides a rapid analytical tool for measuring subtle structural differences in chemicals. IMS separates gas-phase ions based on their size-to-charge ratio. This study, for the first time, reports the application of MALDI to the measurement of small molecules in a biological matrix by ion mobility-time of flight mass spectrometry (IM-TOFMS) and demonstrates the advantage of ion-signal dispersion in the second dimension. Qualitative comparisons between metabolic profiling of the Escherichia coli metabolome by MALDI-TOFMS, MALDI-IM-TOFMS and electrospray ionization (ESI)-IM-TOFMS are reported. Results demonstrate that mobility separation prior to mass analysis increases peak-capacity through added dimensionality in measurement. Mobility separation also allows detection of metabolites in the matrix-ion dominated low-mass range (m/z < 1500 Da) by separating matrix signals from non-matrix signals in mobility space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号