首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inelastic electron tunnelling spectroscopy (IETS) is now a well established technique for the study of molecular adsorbates on metal oxides. It yields vibrational spectra of the adsorbates with high resolution and sensitivity to submonolayer coverage. This compilation brings together in one volume a wide range of results obtained in IETS laboratories around the world. As well as providing a ready reference, after the fashion of the various infrared spectral atlases, it is intended to show the extent of the systems to which IETS has already been applied and point the way to further fruitful areas of study. Adhesion, catalysis, lubrication and corrosion are specific areas which have benefitted from IETS investigations. Some 179 figures display spectra contributed from over 20 different research groups. At the end there is a bibliography of more than 300 references updated to mid-1984.  相似文献   

2.
We report on the vibrational fingerprint of single C(60) terminated molecules in a mechanically controlled break junction (MCBJ) setup using a novel statistical approach manipulating the junction mechanically to address different molecular configurations and to monitor the corresponding vibrational modes. In the IETS spectra, the vibrations of the anchoring C(60) dominate the spectra; thus information on the unit anchored with C(60) to the electrodes is masked by the modes arising from the anchoring groups. However, we have identified the additional modes from the fluorene backbone optically.  相似文献   

3.
We have examined the effects of intermolecular interactions on the inelastic electron tunneling spectroscopy (IETS) of model systems: a pair of benzenethiol or a pair of benzenedithiol sandwiched between gold electrodes. The dependence of the IETS on the mutual position of and distance between the paired molecules has been predicted and discussed in detailed. It is shown that, although in most cases, there are clear spectral fingerprints present which allow identification of the actual structures of the molecules inside the junction. Caution must be exercised since some characteristic lines can disappear at certain symmetries. The importance of theoretical simulation is emphasized.  相似文献   

4.
Inelastic electron tunneling spectroscopy (IETS) is a relatively new form of vibrational spectroscopy which is able to address problems previously unsolved by either IR or Raman. It is particularly useful for surface analysis.  相似文献   

5.
We compare the low-temperature electron transport properties of alkyl monolayers which utilize different attachment strategies to gold. Inelastic electron tunneling spectroscopy (IETS) and current-voltage analysis were performed on molecular junctions incorporating alkyl-dithiocarbamate and alkanethiolate self-assembled monolayers of similar length. Alkyl-dithiocarbamate monolayers were formed by the condensation of dioctylamine or didecylamine with carbon disulfide in anhydrous ethanol and compared to alkanethiolate SAMs of 1-decanethiol and 1-dodecanethiol, respectively. The electron transport properties of each monolayer were examined using magnetically assembled microsphere junctions under high-vacuum conditions at low temperature. IETS was employed to differentiate the films on the basis of vibrational modes which are characteristic of each method of attachment. We use quantum chemical simulations of model compounds to calculate frequency and intensity of predicted signals arising from molecular vibrations to aid in the accurate assignment of the spectra. A qualitative comparison of our devices also reveals an increase in current density when utilizing dithiocarbamate attachment to gold compared to alkanethiolate molecules of similar length.  相似文献   

6.
A theoretical analysis of inelastic electron tunneling spectroscopy (IETS) experiments conducted on molecular junctions is presented, where the second derivative of the current with respect to voltage is usually plotted as a function of applied bias. Within the nonperturbative computational scheme, adequate for arbitrary parameters of the model, we consider the virtual conduction process in the off-resonance region. Here we study the influence of few crucial factors on the IETS spectra: the strength of the vibronic coupling, the phonon energy, and the device working temperature. It was also shown that weak asymmetry in the IETS signal with respect to bias polarity is obtained as a result of strongly asymmetric connection with the electrodes.  相似文献   

7.
基于杂化密度泛函理论和格林函数方法, 计算了4,4’-联苯二硫酚分子器件的非弹性电子隧穿谱, 并研究了电极距离对该非弹性电子隧穿谱的影响. 计算结果表明, 非弹性电子隧穿谱随电极距离的改变呈明显不同的特征, 从而表明了分子的非弹性电子隧穿谱技术能够灵敏地反映出分子器件的微观结构. 研究结果显示, 垂直于电极表面的振动模式对非弹性电子隧穿谱具有较大的贡献.  相似文献   

8.
Single 4,7,12,15-tetrakis[2.2]paracyclophane were deposited on NiAl(110) surface at 11 K. Two adsorbed species with large and small conductivities were detected by the scanning tunneling microscope (STM). Their vibrational properties were investigated by inelastic electron tunneling spectroscopy (IETS) with the STM. Five vibrational modes were observed for the species with the larger conductivity. The spatially resolved vibrational images for the modes show striking differences, depending on the coupling of the vibrations localized on different functional groups within the molecule to the electronic states of the molecule. The vibrational modes are assigned on the basis of ab initio calculations. No IETS signal is resolved from the species with the small conductivity.  相似文献   

9.
It is widely believed that when a molecule with thiol (S-H) end groups bridges a pair of gold electrodes, the S atoms bond to the gold and the thiol H atoms detach from the molecule. However, little is known regarding the details of this process, its time scale, and whether molecules with and without thiol hydrogen atoms can coexist in molecular junctions. Here, we explore theoretically how inelastic tunneling spectroscopy (IETS) can shed light on these issues. We present calculations of the geometries, low bias conductances, and IETS of propanedithiol and propanedithiolate molecular junctions with gold electrodes. We show that IETS can distinguish between junctions with molecules having no, one, or two thiol hydrogen atoms. We find that in most cases, the single-molecule junctions in the IETS experiment of Hihath et al. [Nano Lett. 8, 1673 (2008)] had no thiol H atoms, but that a molecule with a single thiol H atom may have bridged their junction occasionally. We also consider the evolution of the IETS spectrum as a gold STM tip approaches the intact S-H group at the end of a molecule bound at its other end to a second electrode. We predict the frequency of a vibrational mode of the thiol H atom to increase by a factor ~2 as the gap between the tip and molecule narrows. Therefore, IETS should be able to track the approach of the tip towards the thiol group of the molecule and detect the detachment of the thiol H atom from the molecule when it occurs.  相似文献   

10.
Using a perturbative approach to simple model systems, we derive useful propensity rules for inelastic electron tunneling spectroscopy (IETS) of molecular wire junctions. We examine the circumstances under which this spectroscopy (that has no rigorous selection rules) obeys well defined propensity rules based on the molecular symmetry and on the topology of the molecule in the junction. Focusing on conjugated molecules of C(2h) symmetry, semiquantitative arguments suggest that the IETS is dominated by a(g) vibrations in the high energy region and by out of plane modes (a(u) and b(g)) in the low energy region. Realistic computations verify that the proposed propensity rules are strictly obeyed by medium to large-sized conjugated molecules but are subject to some exceptions when small molecules are considered. The propensity rules facilitate the use of IETS to help characterize the molecular geometry within the junction.  相似文献   

11.
In IR and Raman spectral studies, the congestion of the vibrational modes in the C-H stretching region between 2800 and 3000 cm(-1) has complicated spectral assignment, conformational analysis, and structural and dynamics studies, even with quite a few of the simplest molecules. To resolve these issues, polarized spectra measurement on a well aligned sample is generally required. Because the liquid interface is generally ordered and molecularly thin, and sum frequency generation vibrational spectroscopy (SFG-VS) is an intrinsically coherent polarization spectroscopy, SFG-VS can be used for discerning details in vibrational spectra of the interfacial molecules. Here we show that, from systematic molecular symmetry and SFG-VS polarization analysis, a set of polarization selection rules could be developed for explicit assignment of the SFG vibrational spectra of the C-H stretching modes. These polarization selection rules helped assignment of the SFG-VS spectra of vapor/alcohol (n = 1-8) interfaces with unprecedented details. Previous approach on assignment of these spectra relied on IR and Raman spectral assignment, and they were not able to give such detailed assignment of the SFG vibrational spectra. Sometimes inappropriate assignment was made, and consequently misleading conclusions on interfacial structure, conformation and even dynamics were reached. With these polarization rules in addition to knowledge from IR and Raman studies, new structural information and understanding of the molecular interactions at these interfaces were obtained, and some new spectral features for the C-H stretching modes were also identified. Generally speaking, these new features can be applied to IR and Raman spectroscopic studies in the condensed phase. Therefore, the advancement on vibrational spectra assignment may find broad applications in the related fields using IR and Raman as vibrational spectroscopic tools.  相似文献   

12.
Inelastic tunneling spectroscopy (IETS) measurement using scanning tunneling microscopy (STM) with a commercially available STM set up is presented. The STM-IETS spectrum measured on an isolated trans-2-butene molecule on the Pd(110) shows a clear vibrational feature in d2I/dV2 at the bias voltage of 360 mV and -363 mV, which corresponds to the nu(C-H) mode (d2I/dV2 approximately 10 nA/V2). In addition, we have obtained an image by mapping the vibrational feature of nu(C-H) in d2I/dV2. The image is obtained by scanning the tip on the surface with the feedback loop activated while the modulation voltage is superimposed on the sample voltage. With the method that is readily performable with conventional software, we have clearly differentiated the molecules of trans-2-butene and butadiene through the mapping of the vibrational feature, demonstrating its capability of chemical identification in atomic scale.  相似文献   

13.
We present results for a simulated inelastic electron-tunneling spectra (IETS) from calculations using the "gDFTB" code. The geometric and electronic structure is obtained from calculations using a local-basis density-functional scheme, and a nonequilibrium Green's function formalism is employed to deal with the transport aspects of the problem. The calculated spectrum of octanedithiol on gold(111) shows good agreement with experimental results and suggests further details in the assignment of such spectra. We show that some low-energy peaks, unassigned in the experimental spectrum, occur in a region where a number of molecular modes are predicted to be active, suggesting that these modes are the cause of the peaks rather than a matrix signal, as previously postulated. The simulations also reveal the qualitative nature of the processes dominating IETS. It is highly sensitive only to the vibrational motions that occur in the regions of the molecule where there is electron density in the low-voltage conduction channel. This result is illustrated with an examination of the predicted variation of IETS with binding site and alkane chain length.  相似文献   

14.
Inelastic electron tunneling spectroscopy (IETS) is a unique surface and interface analytical technique using electron tunneling through a metal/insulator/metal tunneling junction at cryogenic temperatures. It gives the vibrational spectrum of a very thin (nm) insulator film and the adsorbed species on it. The high sensitivity, good resolution, and wide spectral range inherent in IETS enable us to analyze the surface and interface of the insulator in detail. The tunneling junction is a good model system for oxide catalysts, electronic devises, and solid state sensors. Information about the surfaces of alumina and magnesia, the adsorption states and chemical reactions of adsorbed species occurring on these oxides can be obtained through an analysis of the tunneling spectra. The structures and properties of evaporated thin semiconductor films can also be studied. In this review, the surface characterization of alumina and magnesia, the adsorption and surface reactions of organic acids, esters, amides, and nitryls on these oxides, and the characterization of thin evaporated films of Si, Ge, and the oxides are summarized.  相似文献   

15.
Inelastic electron tunneling spectroscopy (IETS) combined with scanning tunneling microscopy (STM) allows the acquisition of vibrational signals at surfaces. In STM-IETS, a tunneling electron may excite a vibration, and opens an inelastic channel in parallel with the elastic one, giving rise to a change in conductivity of the STM junction. Until recently, the application of STM-IETS was limited to the localized vibrations of single atoms and molecules adsorbed on surfaces. The theory of the STM-IETS spectrum in such cases has been established. For the collective lattice dynamics, i.e., phonons, however, features of STM-IETS spectrum have not been understood well, though in principle STM-IETS should also be capable of detecting phonons. In this review, we present STM-IETS investigations for surface and interface phonons and provide a theoretical analysis. We take surface phonons on Cu(1?1?0) and interfacial phonons relevant to graphene on SiC substrate as illustrative examples. In the former, we provide a theoretical formalism about the inelastic phonon excitations by tunneling electrons based on the nonequilibrium Green’s function (NEGF) technique applied to a model Hamiltonian constructed in momentum space for both electrons and phonons. In the latter case, we discuss the experimentally observed spatial dependence of the STM-IETS spectrum and link it to local excitations of interfacial phonons based on ab-initio STM-IETS simulation.  相似文献   

16.
Although difluorobenzenes (DFBs) are well-known organic molecules to understand the electronic structure and spectroscopy of benzene and its derivatives, few theoretical investigations have been performed to simulate their fine spectra and assign their vibrational bands. In this work, the fluorescence excitation (FEX) spectra of the first excited singlet states for three DFBs molecules (para-, meta- and ortho-difluorobenzene) were simulated by the Franck-Condon calculations with the displaced harmonic oscillator approximation plus the distorted correction. The calculated results indicated that the spectral profiles of three DFBs are primarily described by the Franck-Condon progression of their totally symmetric vibrational modes. Specifically, it is found that modes v(3) and v(5) of para-DFB, v(8) and v(9) of meta-DFB, and ortho-DFB play the most important roles in the fluorescence spectra. By taking into account the contributions of the distorted effect, we could assign most of the dominant overtones from the nontotally symmetric vibrational modes, and the results agree well with the experimental assignments. Some inferred and unassigned vibrational transitions in experiment were confirmed according to the present calculated results. In addition, in the simulated fluorescence spectra, we tentatively assigned several combination bands with relative moderate intensity and weak vibrational lines which appeared in the experimental observations but the corresponding assignments were not given. The present work reproduced satisfactorily the experimental FEX spectra of p-, m-, and o-DFBs derivatives and provided a useful method to simulate the FEX spectra of dihalogenated benzene molecules.  相似文献   

17.
Fourier Transform spectroscopy with 10?8 second time resolution for recording IR emission spectra has been developed as an efficient means for detecting previously unknown vibrational modes of transient radicals. 193 nm photodissociation of a precursor molecule is used to generate vibrationally excited radicals, from which IR emission is recorded with time and spectral resolution. Assignment of the spectra is performed using information obtained through multiple precursors, isotopic substitution, time dependence of emission intensity, theoretical calculations, and 2‐dimensional cross‐spectra correlation analysis. The radicals vinyl, cyanovinyl, and OCCN have been studied with many vibrational modes identified.  相似文献   

18.
19.
Inelastic electron tunneling spectroscopy (IETS) measurements are usually carried out in the low-voltage ("Ohmic", i.e., linear) regime where the elastic conduction/voltage characteristic is symmetric to voltage inversion. Inelastic features, normally observed in the second derivative d(2)I/dV(2) are also symmetric (in fact antisymmetric) in many cases, but asymmetry is sometimes observed. We show that such asymmetry can occur because of different energy dependences of the two contact self-energies. This may be attributed to differences in contact density of states (different contact material) or different energy dependence of the coupling (STM-like geometry or asymmetric positioning of molecular vibrational modes in the junction). The asymmetry scales with the difference between the energy dependence of these self-energies and disappears when this dependence is the same for the two contacts. Our nonequilibrium Green function approach goes beyond proposed WKB scattering theory in properly accounting for Pauli exclusion, as well as providing a path to generalizations, including consideration of phonon dynamics and higher-order perturbation theory.  相似文献   

20.
FT-Raman, FTIR and surface-enhanced Raman spectroscopy (SERS) are applied to the vibrational characterization of the antiviral and antiparkinsonian drug amantadine. SERS spectroscopy is employed for the first time for characterizing the interfacial behavior of this molecule and to study its interaction with colloidal silver. The comparison of SERS spectrum with the Raman spectra of amantadine in solid state and in aqueous solution reveals remarkable changes attributed to the interaction of the drug with the metal through the unprotonated amino group and the formation of a self-assembled amantadine layer on the metal surface. A tentative assignment of the obtained vibrational spectra is carried out on the basis of the vibrational spectra of the structurally related molecules adamantane and tert-buthylamine and the ab initio calculations accomplished for amantadine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号