首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
张岩  马晓斐  吕品  丛斌 《分析化学》2014,(12):1833-1837
使用双梯度液相色谱系统紫外检测器,建立了二维液相色谱法全自动快速同时测定牙膏中三七皂苷R1、人参皂苷Rg1、Re和Rb1的含量。样品经超声提取后,以Syncronis C18为一维分析柱,ODS C18为二维分析柱,利用一维色谱柱完成三七皂苷R1和人参皂苷Rb1分离测定以及人参皂苷Rg1和人参皂苷Re的净化;利用二维色谱柱完成人参皂苷Rg1和人参皂苷Re的分析。一维分析和二维分析均以乙腈-水体系作为流动相,梯度洗脱,检测波长为203 nm,整个分析过程仅需30 min。三七皂苷 R1、人参皂苷 Rg1、Re 和 Rb1在0.5~200 mg/L范围内线性良好,相关系数R2分别为0.9994,0.9996,0.9995和0.9994,平均回收率均在86.4%~95.1%之间。本方法简便快速,测定结果准确可靠,可用于牙膏中三七皂苷R1、人参皂苷Rg1、Re和Rb1含量的测定。  相似文献   

2.
利用HPLC-ELSD对茜芷胶囊中的活性成分三七皂苷R1、人参皂苷Rg1和Rb1的含量进行测定.三七皂苷R1、人参皂苷Rg1及Rb1分别在0.13~2.60、0.30~6.00、0.38~7.60μg范围内呈现良好的线性关系,平均回收率分别为98.0%(RSD1.7%),97.1%(RSD1.8%),97.0%(RSD1.5%).该方法简便、准确、重现性好,可用于茜芷胶囊的质量控制.  相似文献   

3.
采用超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法(UPLC-Orbitrap HRMS),通过对照品的保留时间、相对分子质量、二级质谱碎片和相关文献等信息对三七果中的皂苷类化合物进行了解析,以探明三七果中的皂苷类成分及其结合态糖苷类化合物构成.从三七果中共鉴定出60种三萜皂苷,包括43种原人参二醇型皂苷、3种原人参...  相似文献   

4.
本研究首先进行了三七人参(Panax notoginseng(Burk.)F.H Chen)花的化学成分研究,从中分离得到22个人参皂苷成分,其中6个为新化合物.在此基础上,探讨了通过酸水解三七人参花的总皂苷生成20(R)-和20(S)-ginsenoside Rg3的反应条件,并通过LC-Ms-MS技术鉴定了其总皂苷水解产物中的几种新的人参皂苷成分.  相似文献   

5.
采用高效液相色谱-二极管阵列检测器法测定复方丹参片中12种成分并判定是否掺有三七茎叶. 流动相为乙腈-0.1%磷酸水溶液(梯度洗脱),通过变换波长结合紫外光谱扫描定性的方式对丹参素钠、原儿茶酸、原儿茶醛、迷迭香酸、丹酚酸B、三七皂苷R1、人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、人参皂苷Rb3、丹参酮I、丹参酮IIA进行分析. 12种成分的线性关系良好(r≥0.999 2),精密度(RSD<2.0%)、稳定性(RSD<2.0%)、回收率(96.1%~99.8%)均符合方法学要求,可用于复方丹参片的质量控制.  相似文献   

6.
建立了胶束毛细管电泳法同时测定中药复方制剂消栓通络片中芦丁、丹参素、人参皂苷Rg1、人参皂苷Rb1、三七皂苷R1含量的分析方法。研究了缓冲体系的浓度、添加剂种类、分离电压、进样时间对组分分离的影响,以60 mmol/L SDS-30 mmol/L Tris-10 mmol/L硼酸(含15%甲醇)作运行缓冲液,检测波长214 nm,5种组分在26 min内得到基线分离。芦丁、丹参素、人参皂苷Rb1、人参皂苷Rg1、三七皂苷R1的质量浓度分别在2.5~100、2.5~200、10~300、15~400、15~400 mg/L范围内与其峰面积呈良好的线性关系,检出限分别为0.3、0.9、3.0、5.0、6.0 mg/L。样品在低、中、高3个浓度下的加标回收率为93%~108%,相对标准偏差均不大于4.5%。该方法简便、快速,可用于实际样品检测。  相似文献   

7.
从新鲜人参根中分离得到了1个新化合物, 根据理化性质和谱学方法并与文献报道的相关化合物的数据进行比较, 鉴定其结构为丙二酰基三七人参皂苷-R4(Malonyl-notoginsenoside-R4, 1).  相似文献   

8.
建立一种新的溶剂/流速双梯度-整体柱高效液相色谱法快速测定三七中药配方颗粒中4种皂苷成分. 通过乙腈浓度、流速与被测物的lg k线性相关性, 预测被测组分三七皂苷R1, 人参皂苷Rg1与人参皂苷Re的适宜k值, 以测得的分离度为优化指标, 建立分离R1, Rg1, Re的最佳分离模式1和2|在此基础上, 通过考察乙腈浓度和流速随时间的变化率对分离人参皂苷Rb1的影响, 以Rb1与相邻杂质的分离度为优化指标, 得到分离R1, Rg1, Re, Rb1的两种最佳模式. 应用色谱优化函数(COF)作为综合指标评价, 结果显示模式2优化效果更好. 采用模式2的色谱条件, 20 min内完成对三七配方颗粒中4种皂苷成分的质量分析, 结果表明该方法准确可行、快速.  相似文献   

9.
构建微流蒸发光散射检测器(μELSD)与加压毛细管电色谱(pCEC)联用系统,测定中药提取物注射用血塞通(冻干)中三七皂苷R1、人参皂苷Rg1,Re,Rb1、Rd考察系统的实用性和稳定性。用C18毛细管色谱柱,通过对流动相体系、梯度洗脱条件、雾化载气流速、蒸发温度、施加电压等参数的优化,确定了注射用血塞通(冻干)5种成分含量测定的最佳测定参数。最佳测定参数如下,流动相A为15 mmol/L甲酸-三乙胺乙腈溶液(pH=7.0),流动相B为15 mmol/L甲酸-三乙胺溶液(pH=7.0);梯度洗脱条件:0~10 min,19%A;10~30 min,22%A;30~35 min,36%A;35~45 min,40%A。雾化载气流速2 L/min;蒸发温度120℃;施加电压+8 kV。5种成分线性范围为8.6~146.9 ng(三七皂苷R1)、6.9~189.7 ng(人参皂苷Rg1)、6.8~171.4 ng(人参皂苷Re)、9.4~156.1 ng(人参皂苷Rb1)、7.5~180.5 ng(人参皂苷Rd),5种成分回收率都在95%~105%之间。实验表明,构建的pCEC-μELSD联用系统能用于药物中有效成分的含量测定。μELSD的构建为毛细管液相色谱、毛细管电色谱和毛细管电泳分离技术提供了一种全新的检测手段。  相似文献   

10.
反相高效液相色谱法同时测定三七药材中4种皂苷的含量   总被引:9,自引:0,他引:9  
建立了以0.02%磷酸-乙腈为流动相,梯度洗脱反相高效液相色谱同时测定中药材三七中三七皂苷R1、人参皂苷Rg1、Rb1和Rd 4种皂苷的新方法。R1、Rg1、Rb1和Rd 4种皂苷的加样回收率分别为89.54%、90.08%、82.82%与84.46%;线性范围分别为0.244-6.110、0.820-20.510、0.396-9.890与0.260-6.500μg。测定了不同规格、部位和来源的三七药材里的4种皂苷R1、Rg1、Rb1和Rd。方法准确可靠,结果稳定,重现性好,可用于三七及其制剂的质控。  相似文献   

11.
The morphological appearance and main ingredients of three Chinese medicines (CMs), P. ginseng, P. quinquefolius, and P. notoginseng of the Panax genus, are similar. However, their pharmacological activities are obviously different. To ensure their safety and efficacy, chemical characteristics of the three CMs were determined using pressurized liquid extraction and HPLC-evaporative light scattering detection. Twelve major saponins, namely notoginsenoside R1, pseudo-ginsenoside F11, ginsenosides Rg1, Re, Rf, Rb1, Rg2, Rc, Rb2, Rb3, Rd, and Rg3 were also quantitatively compared among the three CMs. The contents of total investigated saponins varied considerably, by up to 4-14-fold, between the highest (P. notoginseng, 82.8-136.5 mg/g) and the lowest values (P. ginseng, 10.0-21.1 mg/g). Hierarchical clustering analysis based on the characteristics of 11 investigated saponins (except ginsenoside Rb3) and notoginsenoside R1, pseudo-ginsenoside F11, and the ratio of ginsenoside Rg1/Rb1 and Rg1/Re showed that 56 tested samples were divided into three main clusters in accordance with the three Panax species. Similarity evaluation of chromatograms was also performed using "Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (Version 2004A)". The results showed that a high degree of similarity existed within individual clusters, but a low degree between the clusters, which could be used for quality control of the three CMs.  相似文献   

12.
A new HPLC coupled with evaporative light scattering detection (ELSD) method was developed for simultaneous determination of 11 major triterpene saponins, namely notoginsenoside R1 (1), ginsenosides Rg1 (2), Re (3), Rf(4), Rb1 (5), Rg2 (6), Rc (7), Rb2 (8), Rb3 (9), Rd (10), and Rg3 (11) in Panax notoginseng, a commonly used traditional Chinese medicine (TCM). Pressurized liquid extraction (PLE) was employed for sample preparation, and the analysis was achieved using a Zorbax ODS C18 column eluted with gradient water-ACN in 60 min. The drift tube temperature of ELSD was set at 60 degrees C, and nitrogen flowrate was at 1.4 L/min. The method provided good repeatability and sensitivity for quantification of 11 saponins with overall precision (including intra- and interday) and LOD of less than 2.9% (RSD) and 98 ng, respectively. The validated method was successfully applied to quantify 11 saponins in 28 samples of P. notoginseng collected in different places, which is helpful to control the quality of P. notoginseng and its related products.  相似文献   

13.
Methanol and water are commonly used solvents for chemical analysis and traditional decoction, respectively. In the present study, a high‐performance liquid chromatography with ultraviolet detection method was developed to quantify 11 saponins in Panax notoginseng flower extracted by aqueous solution and methanol, and chemical components and anti‐inflammatory effects of these two extracts were compared. The separation of 11 saponins, including notoginsenoside Fc and ginsenoside Rc, was well achieved on a Zorbax SB C18 column. This developed method provides an adequate linearity (r 2 > 0.999), repeatability (RSD < 4.26%), inter‐ and intraday variations (RSD < 3.20%) with recovery (94.7–104.1%) of 11 saponins concerned. Our data indicated that ginsenoside biotransformation in PNF was found, when water was used as the extraction solvent, but not methanol. Specifically, the major components of Panax notoginseng flower, ginsenosides Rb1, Rc, Rb2, Rb3, and Rd, can be near completely transformed to the minor components, gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, notoginsenoside Fd, and ginsenoside F2, respectively. Total protein isolated from Panax notoginseng flower is responsible for this ginsenoside biotransformation. Additionally, methanol extract exerted the stronger anti‐inflammatory effects than water extract in lipopolysaccharide‐induced RAW264.7 cells. This difference in anti‐inflammatory action might be attributed to their chemical difference of saponins.  相似文献   

14.
The non-linear relationships between the contents of ginsenoside Rg1, Rb2, Rd and Panax notoginseng saponins(PNS) in Panax notoginseng root herb and the near infrared(NIR) diffuse reflectance spectra of the herb were established by means of artificial neural networks(ANNs). Four three-layered perception feed-for-ward networks were trained with an error back-propagation algorithm. The significant principal components of the NIR spectral data matrix were utilized as the input of the networks. The networks architecture and parameters were selected so as to offer less prediction errors. Relative prediction errors for Rg1, Rb1, Rd and PNS obtained with the optimum ANN models were 8.99%, 6.54%, 8.29%, and 5.17%, respectively, which were superior to those obtained with PLSR methods. It is verified that ANN is a suitable approach to model this complex non-linearity. The developed method is fast, non-destructive and accurate and it provides a new efficient approach for determining the active components in the complex system of natural herbs.  相似文献   

15.
利用高效液相色谱-飞行时间质谱联用的方法,分别对人参配伍山楂前后人参皂苷的变化进行分析,同时对人参皂苷Re、Rg1、Rb1、Rd与山楂配伍的水解规律进行系统研究,并与单独煎煮液、仿山楂配伍pH值煎煮液的水解产物进行比较,结果发现人参与山楂配伍后人参皂苷Rg1、Rb1含量明显减少,而人参皂苷Re、Rd、Rg2、Rg3、F2、Rh1含量明显增加,其中人参皂苷Re与山楂配伍后水解产物为人参皂苷20(R)-Rg2、20(S)-Rg2,仿山楂配伍pH值水解产物为人参皂苷20(R)-Rg2、20(S)-Rg2、Rg4、Rg6;人参皂苷Rg1与山楂配伍后水解产物为20(S)-Rh1、20(R)-Rh1,仿山楂pH值水解产物为20(S)-Rh1、20(R)-Rh1、Rh4、Rk3;人参皂苷Rb1与山楂配伍后水解产物为Rd、20(S)-Rg3,仿山楂pH值水解产物为F2、20(S)-Rg3;人参皂苷Rd与山楂配伍后水解产物为F2、20(S)-Rg3、20(R)-Rg3,仿山楂pH值水解产物为20(S)-Rg3、20(R)-Rg3。研究表明,不同人参皂苷和山楂配伍后与仿山楂pH值的水解产物并不相同,人参与山楂配伍改变了人参皂苷成分的种类及含量。本研究为临床方剂中人参与山楂配伍后成分的变化提供物质基础数据。  相似文献   

16.
A reversed-phase high-performance liquid chromatography-diode array detection method was developed and validated for the simultaneous determination of six saponins (notoginsenoside R1, ginsenosides Rg1, Re, Rb1, Rc, Rd) in raw and steamed Panax notoginseng. Linearity (r2 > 0.9988), intra- and inter-day precision (RSD < 4%), limit of detection (0.008-0.013 mg/ml), limit of quantification (0.027-0.042 mg/ml) of the saponins were determined. The method was successfully applied to 11 pairs of raw and steamed P. notoginseng products. Three products showed discrepancies between theirlabelled claims (raw or steamed) and the results of analysis. This new, simple and reliable method could be used in the quality control of raw and steamed P. notoginseng.  相似文献   

17.
This study compared eight major ginsenosides (Rg1, Rg2, Rf, Re, Rd, Rc, Rb1 and Rb2) between Panax sokpayensis and Panax bipinnatifidus collected from Sikkim Himalaya, India. High-performance liquid chromatographic analysis revealed that all major ginsenosides were present in the rhizomes of P. sokpayensis except ginsenoside Rc, whereas ginsenoside Rf, Rc and Rb2 were not detected in P. bipinnatifidus.  相似文献   

18.
The flower buds of Panax notoginseng have been commonly used for the treatment of hypertension, vertigo, tinnitus and acute faucitis in China. The amount of total saponins in the flower buds is higher than in any other parts of P. notoginseng. However, the compositions of flower buds have not been quantified clearly until now. A sensitive and efficient high-performance liquid chromatography-ultraviolet (HPLC-UV) method was developed for the first time to simultaneously quantify eight active saponins in the flower buds of P. notoginseng, including notoginsenoside R(1) and ginsenosides Rg(1), Re, Rb(1), Rb(2), Rb(3), Rd and F(2). The analysis was performed on a reversed-phase C(18) column with gradient elution of acetonitrile and 0.01% aqueous formic acid. The proposed method provided good linearity, reproducibility and sensitivity for the simultaneous quantification of the investigated saponins with overall intra- and inter-day precision and accuracy of better than 4.1% (RSD) and higher than 95% (accuracy), respectively. The recoveries for all the saponins determined were in the range 94.7-104.8% with RSD better than 3.1%. Using the optimized method, we were able to analyze samples from different villages of Wenshan Prefecture, China, which is helpful for quality control of flower buds of P. notoginseng.  相似文献   

19.
A single-laboratory validation study was conducted for the quantification of Rg1, Re, Rb1, Rc, Rb2, and Rd in Asian ginseng (Panax ginseng C.A. Meyer) and North American ginseng (Panax quinquefolius L.) raw materials and finished products by RP-HPLC. The extraction with aqueous methanol was optimized for whole root, powdered extract, and finished product (raw, tablet, and capsule matrixes) test articles. Root materials were treated with base to hydrolyze acidic malonyl ginsenosides to their neutral counterparts. Calibration curves for each ginsenoside were linear over the following ranges (microg/g): 5-394 for Rg1, 15-1188 for Re, 39-2981 for Rb1, 6-499 for Rc, 5-406 for Rb2, and 7-600 for Rd, all having a coefficient of determination (r2) of > or = 99.5%. The LOD for Rg1, Re, Rb1, Rc, Rb2, and Rd was determined to be 1.06, 1.25, 2.19, 1.24, 1.27, and 1.70 microg/mL, respectively. Quantitative determinations performed with eight test materials by two analysts over 3 days (n = 12) resulted in RSDr values that ranged from 1.11 to 7.61%.  相似文献   

20.
A method is developed for the determination of ginsenoside Rg1, Rb1, Rd, and notoginsenoside R1 of Panax notoginseng (PNS) in rat feces after oral and intravenous administration of total saponins of PNS. The fecal samples are treated with organic extraction and solid-phase extraction prior to high-performance liquid chromatography. The calibration curves for the four saponins are linear in the given concentration ranges. The precision of the method is in the range of 1.0-10.0% (relative standard deviation), and the accuracy is between 80.0% and 110%. The recoveries of this method are all over 75%. This method is successfully applied to the analyses of fecal samples of rats treated with PNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号