首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
离子液体中V2O5催化环己烯选择氧化合成 2-环己烯酮   总被引:1,自引:0,他引:1  
研究了以V2O5为催化剂,H2O2为氧化剂,在室温离子液体中环己烯氧化制备2-环己烯酮的反应.考察了离子液体种类、反应温度、催化剂用量和氧化剂用量等因素对2-环己烯酮产率的影响.结果表明,在H2O2用量为110 mmol,V2O5/环己烯摩尔比为2%,反应温度为313 K的条件下,在[bmim]BF4离子液体中反应10 h后,环己烯的转化率和2-环己烯酮选择性分别为88.7%和91.1%.对含离子液体的催化体系的重复使用性能进行了考察.结果发现,随着使用次数的增加,环己烯的转化率以及2-环己烯酮的选择性有所下降.  相似文献   

2.
钴负载的凹凸棒土催化剂的制备、表征及其催化氧化性能   总被引:4,自引:0,他引:4  
利用浸渍法制备了一系列不同钴含量的凹凸棒土催化剂,使用X射线衍射(XRD),X射线光电子能谱(XPS)和红外光谱(IR),详细研究了催化剂的构效关系,结果表明钴和载体发生作用形成了CoAl2O4和CoFe2O4两种晶相.研究了催化剂在无溶剂条件下对环己烯的催化氧化性能,实验结果表明Co-AT-1(钴含量0.46%)催化剂对环己烯氧化表现出较好的催化活性.催化剂的有效活性成分是CoFe2O4.  相似文献   

3.
CoPc/Al2O3催化分子氧环氧化环己烯的研究   总被引:1,自引:0,他引:1  
常使用均相催化剂[1-4]催化氧化剂对烯烃进行环氧化来制备环氧环己烷,但均相催化剂存在分离回收难,易二聚失活的缺点.近年来对均相催化剂的固载开展了广泛的研究,如郑岩等[5]使用溶胶 -凝胶包容乙酰丙酮镍,M.Salavati-Niasari等[6]用Al2O3固载Mn(Salen)、Mn(en)2和Mn(acac)2金属配合物用于烯烃环氧化,由于Al2O3廉价易得,酞菁具有不易二聚、降解等较稳定的优点[3],本文以酸性Al2O3为载体,固载酞菁钴金属配合物制备CoPc/Al2O3新型环氧化催化剂,并对其结构进行表征,同时以分子氧为氧源,异丁醛为还原剂考察CoPc/Al2O3催化剂对环己烯的催化环氧化活性,探索了环己烯环氧化的较佳工艺参数.  相似文献   

4.
用原位合成法,以酸性Al2O3为载体,酞菁类金属大环配合物为活性组分,合成出CoPc/Al2O3新型环氧化催化剂,红外、紫外-可见、热重分析及XPS证实能够利用该法在Al2O3上固载CoPc催化剂,且催化剂稳定性增加,不易流失.以分子氧为氧源,异丁醛为共还原剂考察CoPc/Al2O3催化剂对环己烯的催化环氧化活性及催化剂的重复使用情况.结果表明,与均相催化剂相比,固载后环己烯转化率增加了8%,环氧环己烷选择性增加了23%,催化剂重复使用4次后,活性仅降低4%.  相似文献   

5.
 丙氨酸与水杨醛反应生成含羧基席夫碱, 利用羧基与氨丙基三乙氧基硅烷中的氨基生成酰胺键得到三乙氧基硅官能团化的配体. 该配体与乙酸锰配位生成的配合物与正硅酸乙酯通过溶胶-凝胶方法共聚制得锚链固定的多相化催化剂. 利用FT-IR,XPS和N2吸附法对该多相化催化剂进行了表征. 与均相催化剂相比,该催化剂对环己烯环氧化反应的催化活性及选择性较高. 在环己烯为25 mmol,异丁醛为50 mmol,催化剂用量为0.01 mmol,反应温度为35 ℃,反应时间为6 h的条件下,环己烯转化率可达99.6%,环氧环己烷选择性可达88.2%. 循环使用6次后催化剂性能没有明显改变.  相似文献   

6.
五氧化二钒催化环己烯烯丙位氧化   总被引:5,自引:0,他引:5  
 研究了以五氧化二钒为催化剂,以过氧化氢水溶液为氧源氧化环己烯. 考察了溶剂种类、溶剂用量、催化剂用量和反应温度等因素对催化剂性能的影响. 结果表明,常温下环己烯在此催化体系中主要发生烯丙位氧化反应生成环己烯酮. 溶剂的种类对催化活性和烯丙位酮式氧化的选择性具有较大的影响,丙酮是该反应的合适溶剂. 在丙酮与环己烯的体积比为4, 五氧化二钒与环己烯的质量比为1∶40, 过氧化氢与环己烯的摩尔比为3和反应温度为20 ℃的条件下,反应24 h后的环己烯转化率可达60%以上,环己烯酮选择性可达85%. 催化反应过程中丙酮可能与过氧化氢作用生成过氧化酮,从而进行氧转移,催化剂则经过V5+/V4+物种的循环使环己烯氧化成为环己烯酮等产物.  相似文献   

7.
以官能团化的MCM-41为载体,通过配位键键连法制备了6种不同配体的固载型锰希夫碱配合物,并使用FT-IR、XPS、N2吸附-脱附、DR-UV/vis、XRD和TGA-DTA等技术对其进行表征.将制得的催化剂用于环己烯的氧化反应,考察了催化剂催化分子氧氧化环己烯的反应性能,结果表明配体的类型对催化剂的活性和产物的选择性...  相似文献   

8.
离子液体中Mn(salen)催化环己烯环氧化反应   总被引:2,自引:0,他引:2  
 研究了离子液体中Mn(salen)络合物催化环己烯的环氧化反应,考察了反应介质、 Mn(salen)络合物催化剂结构和反应条件等对环氧化反应的影响. 在离子液体-CH2Cl2混合溶剂中,以相对廉价的H2O2为氧化剂,得到了高的环己烯转化率和环氧环己烷选择性. 当以邻苯二胺和水杨醛制备的Mn(salen)络合物为催化剂,反应温度为273 K时,在[bmim]BF4-CH2Cl2的混合溶剂中,环己烯的转化率和环氧环己烷选择性分别可达100%和94.0%. 此外,反应结束后,产物可以由正己烷萃取出来,解决了传统均相催化体系中催化剂与产物不易分离的问题.  相似文献   

9.
利用三缺位Keggin型杂多酸[A-α-PW9O34]9-和[(FeШ(OH2)2)3(A-α-PW9O34)2]9-的四丁基铵盐做为催化剂,H2O2做为氧化剂催化环己烯氧化反应. 考察了反应时间、H2O2与环己烯的摩尔比,催化剂的用量等因素对反应结果的影响. 结果表明:在1, 2-二氯乙烷为10 mL,H2O2 (30 %)与环己烯的摩尔比为2,反应温度为35 oC,反应时间为6 h,[(C4H9)4N]9[A-α-PW9O34]为催化剂的条件下,环己烯氧化反应的转化率为55 %,主要产物是环氧环己烷,其选择性 ≥ 99 %;而以[(C4H9)4N]9[(FeШ(OH2)2)3(A-α-PW9O34)2]为催化剂时环己烯氧化反应的转化率17 %,主要产物是2-环己烯-1-酮,选择性 ≥ 99 %.  相似文献   

10.
吴磊 《分子催化》2013,27(2):138-144
采用浸渍法制备了混合氧化物NaPMoO/Ti-MCM-41(n)(n为载体钛硅比)催化剂,考察其在以H2O2为氧化剂的环己烯环氧化反应中的催化性能,并用XRD、UV-Vis、IR、N2吸附-脱附、XPS及H2-TPR等测试技术对催化剂进行表征.结果表明:NPMO/Ti-MCM-41(0.2)的环己烯转化率、环氧环己烷选择性及H2O2利用率达到最高,分别为27.50%、75.31%和78.31%.这归因于负载型NPMO中的MoO3还原能力得到提高;载体Ti-MCM-41中Ti物种进一步促进MoO3的还原能力,从而有利于其与双氧水形成过氧化物活性中间体,使催化性能和双氧水的利用率得到提高.其中负载后的载体Ti-MCM-41孔结构遭到破坏,形成无定形TiOx物种.  相似文献   

11.
采用化学还原法制备了一种新型高活性和高选择性苯选择加氢制环己烯的Ru-Fe-B/ZrO2纳米非晶态合金催化剂,并利用透射电镜、选区电子衍射、X射线衍射和N2物理吸附仪等手段对催化剂进行了表征.重点研究了Ru-Fe-B/ZrO2催化剂活性和选择性的可调变性,及还原剂NaBH4浓度和洗涤后滤液的pH值对其催化性能的影响.结果表明,在新型Ru-Fe-B/ZrO2催化剂上,当苯转化54%时,环己烯选择性高达80%,同时环己烯选择性随苯转化率升高而缓慢下降.向反应浆液中添加酸性或碱性物质可以调变催化剂的活性和选择性,同时催化剂制备工艺和性能具有很好的可重复性.Ru-Fe-B/ZrO2催化剂融合了纳米和非晶材料的特性,这是其对苯选择加氢制环己烯表现出高活性和高选择性的主要原因.  相似文献   

12.
制备了壳聚糖(CS)水杨醛席夫碱钴配合物,利用X射线粉末衍射(XRD)、红外(IR)等方法对其结构特征进行了分析,并以氧气为氧化剂,评价了该配合物的环己烯氧化催化性能,初步考察了催化剂用量、反应温度以及反应时间等因素对氧化反应的影响。实验结果表明:CS-席夫碱钴配合物具有良好的环己烯催化氧化活性和较高的烯丙位氧化选择性,在较优条件下,环己烯转化率和烯丙位氧化选择性分别达到85.3%和81.3%;催化剂具有较好的稳定性,易分离可多次重复使用。  相似文献   

13.
8-羟基喹啉对V2O5催化氧化环己烯的调变作用   总被引:1,自引:0,他引:1  
研究了8-羟基喹啉对丙酮中V2O5催化氧化环己烯合成环己烯酮的调变作用,考察了8-羟基喹啉的用量、反应温度、反应时间、溶剂和催化剂用量对环己烯氧化反应的影响,发现在该催化体系中生成的环己烯醇和环氧环己烷可转化成环己烯酮,在适当的反应条件下可抑制环己烯醇和环氧环己烷的生成.结果表明,当五氧化二钒的用量为1%,五氧化二钒与8-羟基喹啉之比为1∶2,在20℃以下反应时,过氧化氢几乎定向地将环己烯氧化成环己烯酮.认为是8-羟基喹啉与钒的配位作用促进了环己烯酮的生成.  相似文献   

14.
环己烯烯丙位氧化研究   总被引:2,自引:0,他引:2  
环己烯酮是一种医药中间体,较早的合成方法[1]采用冰醋酸为溶剂,铬酐为氧化剂,氧化环己烯生成环己烯酮,产率低,分离困难,且污染严重,较难实现工业化.目前环己烯酮的商品化在国内外都未实现.现在应用价廉的分子氧作氧源,在过渡金属催化剂存在下,催化氧化环己烯的研究已经很多[2~4],但大都集中在环氧化上,对烯丙位氧化研究甚少.本文以乙酰丙酮钴(Ⅱ)作为催化剂,以分子氧为氧源,在高压釜中催化氧化环己烯生成环己烯酮,考察了时间、温度、溶剂及外加物等的影响,并与常压带水条件下的反应结果进行了对比.  相似文献   

15.
用水热合成法制备了纳米Zr O2和Y2O3掺杂的Zr O2(Zr O2-Y),并考察了它们作载体对苯选择加氢制环己烯催化剂Ru-La-B/Zr O2性能的影响。结果表明,2种Zr O2具有相同微晶尺寸、织构性质和粒度分布。但Zr O2仅含有单斜相Zr O2,而Zr O2-Y不但含有单斜相Zr O2,还含有一部分四方相Zr O2。Y2O3掺杂影响Zr O2的组成和物相,进而影响用其制备催化剂的组成和物相。掺杂的Y2O3可以占据一部分不适宜苯加氢生成环己烯的活性位。因此,Zr O2-Y负载Ru-La-B催化剂活性明显低于Zr O2负载的,在低苯转化率下环己烯选择性前者比后者高。由于四方相Zr O2表面羟基比单斜相少,Zr O2-Y负载Ru-La-B催化剂的亲水性比Zr O2负载的差。环己烯不易从Zr O2-Y负载的催化剂表面脱附。当苯转化率高于52%时,Zr O2-Y负载的催化剂的环己烯选择性低于单斜相Zr O2负载的。Zr O2负载的Ru-La-B催化剂上20 min的环己烯收率达到了52.1%,而Zr O2-Y负载的环己烯收率仅45.2%。纳米单斜相Zr O2较适宜作苯选择加氢制环己烯Ru催化剂的载体。  相似文献   

16.
考察了三种不同结构的分子筛(ZSM-5,MCM-22及β)以及不同晶粒大小的ZSM-5分子筛对环己烯水合反应的催化活性. 结果表明,具有12元环孔道体系的β分子筛对环己烯的转化率(9.6%)最高,但对环己醇的选择性(35.4%)最差. MCM-22分子筛的活性很低,其环己烯转化率只有0.8%. 而孔口为10元环结构的ZSM-5分子筛则具有较高的活性(环己烯转化率7.5%)和产物选择性(99.2%),因此是较好的水合催化剂. ZSM-5分子筛的晶粒大小对其环己烯水合反应活性有明显的影响,分子筛晶粒越细,则水合反应活性越高,其原因在于晶粒变细增大了分子筛的外比表面积,从而增加了接近孔口处的活性中心的数量.  相似文献   

17.
苯在Ru-Zn/ZrO2表面部分加氢反应的理论和实验研究   总被引:1,自引:0,他引:1  
采用理论计算和实验方法研究了 Ru-Zn/ZrO2 催化剂上苯的部分加氢反应. 在还原阶段于水相中引入 Zn2+可使部分 Zn 以原子态进入 Ru 基催化剂. 理论计算表明, Zn 原子在 Ru 基催化剂中的存在同时抑制了苯和环己烯在催化剂表面的化学吸附, 尤其是环己烯在整个催化剂表面的吸附处于一定钝化状态, 这是环己烯选择性提高的重要原因. 实验结果表明, Zn 原子在催化剂中浓度的增加使得催化剂的加氢活性单调下降, 而环己烯选择性则单调上升. 实验和理论计算都证实了 Ru 基催化剂中最佳 Zn 含量的存在.  相似文献   

18.
共沉淀法制备了Ru-Zn催化剂,考察了反应修饰剂ZnSO_4和预处理对苯选择加氢制环己烯Ru-Zn催化剂性能的影响。结果表明,反应修饰剂ZnSO_4可以与Ru-Zn催化剂中助剂Zn O反应生成(Zn(OH)2)3(ZnSO_4)(H_2O)盐。随反应修饰剂ZnSO_4浓度增加,(Zn(OH)2)3(ZnSO_4)(H_2O)盐量逐渐增加,Ru-Zn催化剂活性逐渐降低,环己烯选择性逐渐升高。因为(Zn(OH)2)3(ZnSO_4)(H_2O)盐中的Zn2+可以使Ru变为有利环己烯生成的缺电子的Ruδ+物种,而且还可以占据不适宜环己烯生成的强Ru活性位。但当反应修饰剂ZnSO_4浓度高于0.41 mol·L-1后,继续增加ZnSO_4浓度,由于Zn2+水解浆液酸性太强,可以溶解部分(Zn(OH)2)3(ZnSO_4)(H_2O)盐,RuZn催化剂活性升高,环己烯选择性降低。环己烯选择性略微降低,是由于ZnSO_4溶液中大量的Zn2+可以与生成的环己烯形成配合物,稳定生成的环己烯,抑制环己烯再吸附到催化剂表面并加氢生成环己烷。在ZnSO_4最佳浓度0.61 mol·L-1下对Ru-Zn催化剂预处理15 h,Ru-Zn催化剂中助剂Zn O可以与ZnSO_4完全反应生成(Zn(OH)2)3(ZnSO_4)(H_2O)盐,在该催化剂上25 min苯转化68.2%时环己烯选择性和收率分别为80.2%和54.7%。而且该催化剂具有良好的稳定性和重复使用性能。  相似文献   

19.
采用化学还原法制备了苯选择加氢制环己烯催化剂Ru-B/ZrO2,考察了Cr,Mn,Fe,Co,Ni,Cu和Zn等过渡金属的添加对Ru-B/ZrO2催化剂性能的影响.结果表明,这些过渡金属的添加均可提高Ru-B/ZrO2催化剂中的B含量.B的修饰及第二种金属或金属氧化物的集团效应和配位效应导致Ru-B/ZrO2催化剂活性降低和环己烯选择性升高.当Co/Ru原子比为0.06时,Ru-Co-B/ZrO2催化剂上反应25min苯转化率为75.8%时,环己烯选择性和收率分别为82.8%和62.8%.在双釜串联连续反应器中和优化反应条件下,Ru-Co-B/ZrO2催化剂使用419h内苯转化率稳定在40%左右,环己烯选择性和收率分别稳定在73%和30%左右.  相似文献   

20.
环己烯在超临界CO2介质中的催化氧化   总被引:6,自引:0,他引:6  
张宁  李凤仪 《分子催化》1999,13(4):287-291
首次用(NH4)6Mo7O24-Pt/SiO2催化剂,在超临界CO2介质中催化气氧化环己烯。系统地研究了反应温芳和压力对环己烯转化率的影响及反应温度和压力对产物分布和选择性的影响,测定了催化剂的活性组份的流失情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号