首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
本研究在SBA-15分子筛孔道中制备了纳米ZnS。Zn2+首先通过离子交换交换到SBA-15中,通过水热法在SBA-15分子筛孔道中制备了纳米ZnS。(SBA-15)-ZnS复合物由粉末X-线衍射,傅立叶变换红外光谱,低温氮气吸附-解析附技术,固体扩散漫反射光谱以及发光研究进行了表征。粉末X-线衍射研究说明在制备主-客体纳米复合材料中分子筛骨架未被制备过程所破坏,保持完整且结晶度仍很高。傅立叶变换红外光谱表明制备的材料骨架完好。77 K低温氮气吸附-解析附研究表明所制备的复合材料孔体积,孔尺寸以及表面积相对于SBA-15分子筛降低,证明客体ZnS已成功地组装入分子筛孔道中。所制备的纳米复合材料固体扩散漫反射吸收光谱相对于体相ZnS显示出蓝移表明,ZnS已限制在分子筛的孔道中且复合材料中分子筛的孔道对ZnS具有明显的立体限域效应,ZnS成功地组装在SBA-15分子筛的孔道中。发光研究表明,(SBA-15)-ZnS样品出现明显发光现象。主-客体复合材料具有良好的发光性能,有望在发光材料领域中获得应用。  相似文献   

2.
介孔分子筛增强聚双环戊二烯   总被引:1,自引:0,他引:1  
分别采用介孔分子筛SBA-15原位聚合及SBA-15负载催化剂原位聚合的方法,制备聚双环戊二烯(PDCPD)/SBA-15复合材料.比较不同制备方法对PDCPD/SBA-15力学性能的影响,运用XRD、TEM、TG、SEM等研究了SBA-15的增强机理.研究结果表明,采用原位聚合的方法制备的复合材料,SBA-15孔道中...  相似文献   

3.
制备了中孔分子筛SBA-15,以SBA-15为载体采用真空浸渍法制备了负载型Ru基水煤气变换反应的催化剂。利用透射电子显微镜、X-射线粉末衍射等方法对样品进行了表征。结果表明,合成的SBA-15分子筛孔径约为8 nm,粒径约为1 nm的Ru纳米粒子均匀分布在分子筛孔道中,添加适量的La2O3助剂可以显著提高催化剂的低温活性。当Ru和La2O3的负载量分别为4%和8%时,R4L8/SBA-15催化剂对CO转化率在255℃和265℃下分别达到56%和98%。  相似文献   

4.
古丽米娜  陈悦  李晓天  姚建曦 《化学学报》2011,69(23):2827-2834
采用水热-组装法、溶剂挥发法等材料合成方法制备了不同形貌(粉末棒状、单块、薄膜)负载染料的介孔SBA-15复合材料, 并开展光学性质研究. 通过TEM, XRD, N2吸附-脱附表征证明所合成的各种形貌SBA-15材料均具有规则有序介孔结构, 组装染料后复合材料的形貌及结构保持完整|Uv-vis, PL表征表明染料在SBA-15孔道中呈单分散状态, 负载染料后的复合材料具有发光特性.  相似文献   

5.
采用聚乙烯吡咯烷酮(PVP)保护的化学共还原法制备了Pd/Co双金属纳米颗粒, 研究了PVP及还原剂(NaBH4)的用量、金属盐浓度、金属比例等对Pd/Co双金属纳米颗粒催化NaBH4制氢性能的影响. 透射电子显微镜(TEM)的结果表明, 所制备的Pd/Co双金属纳米颗粒的平均粒径在1.5-2.8 nm之间. Pd/Co双金属纳米颗粒(BNPs)的催化活性远高于Pd与Co单金属纳米颗粒的活性; 当Pd/Co的理论原子比为1/9时, 双金属纳米颗粒的催化活性最高可达15570 mol·mol-1·h-1 (文中纳米颗粒的催化活性均为每摩尔Pd的活性). 密度泛函理论(DFT)的计算结果表明, Pd原子与Co原子之间发生电荷转移, 使得Pd原子带负电而Co原子带正电, 荷电的Pd和Co原子进而成为催化反应的活性中心. 所制备的Pd/Co双金属纳米颗粒具有很好的催化耐久性, 即使重复使用5次后, 该催化剂仍具有较高的催化活性, 且使用后的纳米颗粒催化剂也没有出现团聚现象. 双金属纳米颗粒催化NaBH4水解反应的活化能约为54 kJ·mol-1.  相似文献   

6.
采用简便的原位合成法,将立方晶形Pd纳米粒子高效负载在多壁碳纳米管(MWCNTs)表面,制备了Pd/MWCNTs纳米复合材料。通过改变Pd(acac)2和MWCNTs的投料比,调控负载于MWCNTs表面的Pd纳米粒子的粒径及密度。运用扫描电子显微镜(SEM)、热重分析仪(TG/DTA)、X射线粉末衍射仪(XRD)等技术手段对Pd/MWCNTs纳米复合材料进行详细表征。电化学实验结果表明,Pd/MWCNTs纳米复合材料对甲醇和过氧化氢展现出良好的电催化性能。  相似文献   

7.
蒋丽  刘伟  姚建林  陈彪  顾仁敖 《化学学报》2011,69(20):2368-2372
以三嵌段共聚物P123为模板剂, 正硅酸乙酯为硅源, 水热合成了介孔分子筛SBA-15, 通过对SBA-15内外表面修饰, 使用银氨溶液和硝酸银溶液作为金属源合成Ag/SBA-15, 透射电镜(TEM)研究表明在SBA-15孔道内较好地分散了颗粒状和棒状的Ag纳米粒子. 以苯硫酚作为探针分子, 研究了负载Ag纳米粒子的SBA-15的SERS效应, 结果表明Ag/SBA-15具有良好的SERS活性. 另外, 该材料对催化硼氢化钠还原对硝基苯酚具有良好的催化效果, 通过结合现场SERS技术, 研究了该催化过程的机理.  相似文献   

8.
利用静电纺丝技术制备了含有乙酰丙酮钯(Pd(Ac)2)前体的聚丙烯腈(PAN)纳米纤维,经H2还原和900℃碳化处理得到了Pd纳米粒子负载的碳纳米纤维复合材料(Pd/CNF).此方法中,CNF的制备和Pd纳米粒子的形成是同步进行的,无需对碳载体进行任何预处理,实现了纳米粒子负载CNF的一步制备,简化了实验步骤的同时确保CNF载体骨架的完整性.扫描电镜(SEM)和透射电镜(TEM)分析表明,大小均一的Pd纳米粒子牢固地分散在CNF表面,其粒径约为60 nm.X-射线衍射(XRD)和X-射线光电子能谱(XPS)表征了Pd/CNF的晶体结构.Pd纳米粒子以单质态形式存在,具有面心立方体结构.通过循环伏安法(CV)和计时电流法等电化学方法研究了Pd/CNF复合材料对甲醇的电催化氧化情况,Pd/CNF对甲醇氧化显示出优异的催化活性和稳定性,优于商业化Pd/C催化剂.  相似文献   

9.
不同结构颗粒对PMMA基复合材料性能影响   总被引:1,自引:0,他引:1  
采用原位本体聚合法制备PMMA/MCM-41(with template),PMMA/SBA-15(with template),PMMA/SiO2三种复合材料.研究了介孔分子筛MCM-41,SBA-15和SiO2对PMMA复合材料拉伸强度,冲击强度,热稳定性的影响.由于合成介孔分子筛MCM-41,SBA-15时所用的模板剂CTAB和P123分布于孔口处和颗粒表面上,分别与PMMA基体产生物理缠结作用,增加了两者的相容性;且P123(EO20PO70EO20)表面有较大的PO/EO比率,与小分子量的CTAB相比有较强的疏水性,使得PMMA/SBA-15(with template)复合材料的性能要优于PMMA/MCM-41(with template).  相似文献   

10.
借助水热法,以正硅酸乙酯为硅源,十六烷基三甲基溴化铵为模板剂,在碱性条件下制备了纳米MCM-41分子筛。通过固相热扩散法将La2O3组装到MCM-41介孔孔道中,制备出含La2O3不同浓度的(MCM-41)-La2O3主-客体纳米复合材料。采用化学分析、粉末XRD、FTIR、77K低温N2吸附-解吸附、固体扩散漫反射吸收光谱、拉曼光谱、扫描电镜和发光光谱对主-客体复合材料进行表征。粉末XRD结果表明,La2O3组装到MCM-41分子筛的孔道后并未破坏分子筛骨架,在所制备的(MCM-41)-La2O3主-客体纳米复合材料中MCM-41骨架结构仍然具有较高的有序性,并且,随着植入客体材料浓度的增加复合材料的有序度有所降低。红外光谱表明所制备的纳米复合材料主体分子筛骨架完好;低温氮气吸附-解吸附技术表明La2O3已经部分地占据了MCM-41分子筛孔道,导致分子筛的比表面积和孔体积都有所降低;固体扩散漫反射吸收光谱表明吸收光谱的吸收峰发生了蓝移现象,并表现出量子限域效应,说明La2O3已经组装到了MCM-41分子筛的孔道中;拉曼光谱表明所制备的复合材料没有出现新的特征峰,表明La2O3已经组装到了MCM-41分子筛的孔道中;扫描电镜表明(MCM-41)-La2O3样品的外观非常规整,主要呈现的是球状结构,La2O3含量为10%时,(MCM-41)-La2O3的平均粒径为(114±10)nm。发光光谱研究结果表明,所制备的复合材料(MCM-41)-La2O3样品在396nm处具有较好的发光性质,因而具有作为发光材料潜在应用前景。  相似文献   

11.
Pt nanoparticles (NPs) have been successfully encapsulated in SBA-15 mesoporous silica support. The silica was firstly functionalized by polyaminoamine (PAMAM) dendrimers with various generations and provided different nanometer space for Pt NPs. The growth of Pt NPs is restricted by the double confinement effect of PAMAM dendrimers and SBA-15 mesopores. The Pt NPs can be precisely controlled to localize inter- or intradendrimeric within SBA-15 tunnels. The different pore structures of Gn-PAMAM-SBA-15 (Gn-PS15) support have great influence on the catalytic performance of the encapsulated Pt NPs. The blocking structure of higher generation Gn-PS15 support debased the catalytic performance and increased the activation energy of reaction between Fe(CN)(6)(3-) and S(2)O(3)(2-) in a certain degree.  相似文献   

12.
"Click" dendrimers containing 1,2,3-triazolyl ligands that coordinate to PdII(OAc)2 have been synthesized in view of catalytic applications. Five of these dendrimers contain ferrocenyl termini directly attached to the triazole ligand in order to monitor the number of PdII that are introduced into the dendrimers by cyclic voltammetry. Reduction of the PdII-triazole dendrimers by using NaBH4 or methanol yields Pd nanoparticles (PdNPs) that are stabilized either by several dendrimers (G0, DSN) or by encapsulation inside a dendrimer (G1 and G2: DEN), as confirmed by TEM. Relative to PAMAM-DENs (PAMAM=poly(amidoamine)), the "click" DSNs and DENs show a remarkable efficiency and stability for olefin hydrogenation under ambient conditions of various substrates. The influence of the reductant of PdII bound to the dendrimers is dramatic, reduction with methanol leading to much higher catalytic activity than reduction with NaBH4. The most active NPs are shown to be those derived from dendrimer G1, and variation of its termini groups (ferrocenyl, alkyl, phenyl) allowed us to clearly delineate, optimize, and rationalize the role of the dendrimer frameworks on the catalytic efficiencies. Finally, hydrogenation of various substrates catalyzed by these PdNPs shows remarkable selectivity features.  相似文献   

13.
以PAMAM树形分子为模板制备Pd纳米簇合物   总被引:1,自引:0,他引:1  
以酯端基聚酰胺-胺树形分子(PAMAM)为模板在甲醇溶剂中制备了Pd纳米簇合物. 采用紫外-可见分光光度法和红外光谱法研究了Pd2+与树形分子的作用机理, 结果表明, Pd2+与树形分子内部胺基基团(主要为叔胺基)产生了络合作用. 采用硼氢化钠还原法制备了树形分子包裹的、粒径为2 nm的球形面心立方Pd纳米簇合物. 紫外-可见吸收光谱研究结果表明, Pd2+与树形分子的摩尔比越小, 生成的纳米簇合物尺寸越小; 由于高代数树形分子具有封闭结构, 且其内部配体数目较多, 采用较高代数的树形分子(5.5代)比低代数(3.5代)更有利于得到尺寸小、分散性较好的Pd纳米簇合物.  相似文献   

14.
Poly(N,N′-methylenebisacrylamide-co-acrylic acid) microsphere-supported polyamidoamine (PAMAM) dendrimers up to third generation (G) were grown onto the surface as well as the gel-layer of P(MBA-co-MAA) microspheres by a divergent method. The P(MBA-co-MAA) supported PAMAM dendrimers were used as heterogeneous stabilizers for the gold nanoparticles by an in situ reduction of HAuCl4 via the efficient coordination interaction between the amino groups of the supported PAMAM dendrimers and the gold atoms. The effects of the generations of the P(MBA-co-MAA) supported PAMAM dendrimer on the loadings and the catalytic activity of the heterogeneous Au nanoparticles were systematically investigated with the reduction of 4-nitrophenol to 4-aminophenol as a model reaction.  相似文献   

15.
Dendrimer-metal (silver, platinum, and palladium) nanocomposites are prepared in aqueous solutions containing poly(amidoamine) (PAMAM) dendrimers with surface amino groups (generations 3, 4, and 5) or poly(propyleneimine) (PPI) dendrimers with surface amino groups (generations 2, 3, and 4). The particle sizes of the metal nanoparticles obtained are almost independent of the generation as well as the concentration of the dendrimer for both the PAMAM and the PPI dendrimers; the average sizes of silver, platinum, and palladium nanoparticles are 5.6-7.5, 1.2-1.6, and 1.6-2.0 nm, respectively. It is suggested that the dendrimer-metal nanocomposites are formed by adsorbing the dendrimers on the metal nanoparticles. Studies of the reduction reaction of 4-nitrophenol by these nanocomposites show that the rate constants are very similar between PAMAM and PPI dendrimer-silver nanocomposites, whereas the rate constants for the PPI dendrimer-platinum and -palladium nanocomposites are greater than those for the corresponding PAMAM dendrimer nanocomposites. In addition, it is found that the rate constants for the reduction of 4-nitrophenol involving all the dendrimer-metal nanocomposites decrease with an increase in the dendrimer concentrations, and the catalytic activity of dendrimer-palladium nanocomposites is highest.  相似文献   

16.
G5.0‐OH PAMAM dendrimers were used to prepare fluorescent silver clusters with weaker ultraviolet irradiation reduction method, in which the molar ratio of Ag+ to PAMAM dendrimers was the key factor to determine the geometry and properties of silver nanoparticles. The results showed that because of G5.0‐OH PAMAM dendrimers as strong encapsulatores, when the molar ratios of Ag+ to PAMAM dendrimers was smaller than 5, the obtained Agn clusters (n<5) had line structures and "molecular‐like" properties, which were highly fluorescent and quite stable in aqueous solution. Whereas when the molar ratios were between 5 and 8, the obtained Agn clusters were 2D structures and their fluorescence was weaker. When the molar ratio was larger than 8, the structure of silver nanoparticles was 3D and no fluorescence was observed from the obtained silver nanoparticles.  相似文献   

17.
We report the synthesis, characterization, and catalytic properties of novel monodisperse SiO(2)@Pd-PAMAM core-shell microspheres containing SiO(2) microsphere cores and PAMAM dendrimer-encapsulated Pd nanoparticle (Pd-PAMAM) shells. First, SiO(2) microspheres, which were prepared by the St?ber method, were functionalized with vinyl groups by grafting their surfaces with vinyltriethoxysilane (VTS). The vinyl groups were then converted into epoxides by using m-chloroperoxybenzoic acid. Upon treatment with amine-terminated G4 poly(amidoamine) (PAMAM) dendrimers, the SiO(2)-supported epoxides underwent ring-opening and gave SiO(2)@PAMAM core-shell microspheres. Pd nanoparticles within the cores of the SiO(2)-supported PAMAM dendrimers were synthesized by letting Pd(II) ions complex with the amine groups in the cores of the dendrimers and then reducing them into Pd(0) with NaBH(4). This produced the SiO(2)@Pd-PAMAM core-shell microspheres. The presence of the different functional groups on the materials was monitored by following the changes in FTIR spectra, elemental analyses, and weight losses on thermogravimetric traces. Transmission electron microscopy (TEM) images showed the presence of Pd nanoparticles with average size of 1.56 ± 0.67 nm on the surface of the monodisperse SiO(2)@Pd-PAMAM core-shell microspheres. The SiO(2)@Pd-PAMAM core-shell microspheres were successfully used as an easily recyclable catalyst for hydrogenation of various olefins, alkynes, keto, and nitro groups, giving ~100% conversion and high turnover numbers (TONs) under 10 bar H(2) pressure, at room temperature and in times ranging from 10 min to 3 h. In addition, the SiO(2)@Pd-PAMAM core-shell microspheres were proven to be recyclable catalysts up to five times with barely any leaching of palladium into the reaction mixture.  相似文献   

18.
采用聚苯乙烯(PS)包裹Fe3O4磁性纳米粒子,制得Fe3O4@PS复合微球,以此作为磁性载体,通过微球表面的羧基将聚酰胺-胺类树形大分子(PAMAM)连接到磁性载体上,然后使Ag纳米粒子镶嵌在树形分子层中,制得可再生的金属复合催化粒子Fe3O4@PS@PAMAM-Ag.并采用红外光谱、扫描电镜、电感耦合等离子体质谱(ICP-MS)和X射线光电子能谱等方法对复合催化粒子进行了表征,结果表明,树形分子可以较好地分散和稳定金属Ag纳米粒子,所制复合催化粒子表面Ag含量为1.64%,具有较高的催化还原对硝基苯酚的活性.同时,利用外加磁场可以方便快捷地从反应体系中分离出来,继续用于下一次反应中,复合催化粒子循环使用6次后,仍保持完全的催化性能.  相似文献   

19.
Amine-terminated polyamidoamine (PAMAM) dendrimers were immobilized on glassy carbon electrodes (GCEs) via electrochemical oxidation of the terminal amine groups of dendrimers. The electrochemical immobilization of dendrimers was confirmed by cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The immobilized dendrimer films were robust and behaved as charge-selective electrochemical gates for oppositely charged redox molecules. The immobilization approach was applied to assemble Au dendrimer-encapsulated nanoparticles (Au DENs, dia. 1.5 ± 0.3 nm) on GCEs, and the resulting Au DEN films showed electrocatalytic activity to hydrazine oxidation.  相似文献   

20.
针对Pd/SBA-15和MoO3/SBA-15两类催化剂样品,使用N2物理吸附手段对比研究了限域于介孔SBA-15分子筛孔道内活性相Pd与MoO3的聚集形态.结果表明,金属Pd以颗粒状形态分布在SBA-15分子筛孔道内,氧化物MoO3则以层状形态存在.并用高分辨透射电镜验证了此分析结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号