首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We carried out density functional calculations to study the adsorption of Co13 clusters on graphene. Several free isomers were deposited at different positions with respect to the hexagonal lattice nodes, allowing us to study even the hcp 2d isomer, which was recently obtained as the most stable one. Surprisingly, the Co13 clusters attached to graphene prefer icosahedron‐like structures in which the low‐lying isomer is much distorted; in such structures, they are linked with more bonds than those reported in previous works. For any isomer, the most stable position binds to graphene by the Co atoms that can lose electrons. We find that the charge transfer between graphene and the clusters is small enough to conclude that the Co–graphene binding is not ionic‐like but chemical. Besides, the same order of stability among the different isomers on doped graphene is kept. These findings could also be of interest for magnetic clusters on graphenic nanostructures such as ribbons and nanotubes.  相似文献   

2.
Graphene is a 2D sp2‐hybridized carbon sheet and an ideal material for the adsorption‐based separation of organic pollutants. However, such potential applications of graphene are largely limited, owing to their poor solubility and extensive aggregation properties through graphene? graphene interactions. Herein, we report the synthesis of graphene‐based composites with γ‐Fe2O3 nanoparticle for the high‐performance removal of endocrine‐disrupting compounds (EDC) from water. The γ‐Fe2O3 nanoparticles partially inhibit these graphene? graphene interactions and offer water dispersibility of the composite without compromising much of the high surface area of graphene. In their dispersed form, the graphene component offers the efficient adsorption of EDC, whilst the magnetic iron‐oxide component offers easier magnetic separation of adsorbed EDC.  相似文献   

3.
A new heterogeneous catalyst for the epoxidation of olefins was prepared by immobilization of peroxophosphotungstate anions on the surface of clicked magnetite‐graphene oxide as magnetically recoverable support. To prepare the heterogeneous catalyst, the clicked magnetite‐graphene oxide support was prepared by thiolene click reaction of thiol functionalized graphene oxide with vinyl modified magnetite nanoparticles. The tailored support was then modified with aminopropyl groups followed by electrostatic interaction with peroxophosphotungstate anions to achieve the desired heterogeneous catalyst. Characterization of the catalyst was performed by various physicochemical methods which confirmed the successful immobilization of peroxopolyoxotungstate species on the surface of clicked magnetite‐graphene oxide. Catalytic activity of the catalyst revealed its high catalytic activity and selectivity in the epoxidation of various olefins in the presence of H2O2 as green oxidant. This heterogeneous catalyst can be magnetically reused several times without significant loss of activity and selectivity.  相似文献   

4.
A porous graphitic carbon nitride (g‐C3N4)/graphene composite was prepared by a simple hydrothermal method and explored as the counter electrode of dye‐sensitized solar cells (DSCs). The obtained g‐C3N4/graphene composite was characterized by XRD, SEM, TEM, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. The results show that incorporating graphene nanosheets into g‐C3N4 forms a three‐dimensional architecture with a high surface area, porous structure, efficient electron‐transport network, and fast charge‐transfer kinetics at the g‐C3N4/graphene interfaces. These properties result in more electrocatalytic active sites and facilitate electrolyte diffusion and electron transport in the porous framework. As a result, the as‐prepared porous g‐C3N4/graphene composite exhibits an excellent electrocatalytic activity. In I?/I3? redox electrolyte, the charge‐transfer resistance of the porous g‐C3N4/graphene composite electrode is 1.8 Ω cm2, which is much lower than those of individual g‐C3N4 (70.1 Ω cm2) and graphene (32.4 Ω cm2) electrodes. This enhanced electrocatalytic performance is beneficial for improving the photovoltaic performance of DSCs. By employing the porous g‐C3N4/graphene composite as the counter electrode, the DSC achieves a conversion efficiency of 7.13 %. This efficiency is comparable to 7.37 % for a cell with a platinum counter electrode.  相似文献   

5.
Designed nitrogen and sulfur co‐doped graphene wrapped magnetic core‐shell supported Pd nanoparticles were synthesized through the following steps. Firstly, Fe3O4 was prepared, coated with silica and then functionalized with amine groups to create a positive charge on the structure for enhancing the interaction of the Fe3O4@SiO2 with graphene oxide. Secondary, the pre‐catalyst wrapped with graphene to enhance adsorption of aromatic substrates through π–π stacking. Thirdly, graphene was doped with nitrogen and sulfur to increase the grafting of Pd in hybrid. Finally, Pd NPs were attached on the surface of pre‐engineered structure to produce Fe3O4@SiO2@N,S‐wG@Pd which exhibited high performance in Suzuki reactions. This superior activity can be indexed to the incorporation of N and S atoms into graphene led to high anchoring and well‐dispersion of Pd NPs on the nanocomposite surface offering large amounts of active centers, that strongly increased the interaction between Pd and substrates to decreases Pd leaching.  相似文献   

6.
In this study, the organosilane‐functionalized graphene oxide as a stabilizer was prepared by a facile one‐step silylation approach. [Cu(PPh3)3Cl] complex was successfully immobilized onto the graphene oxide surface through coordination interaction with organosilane ligand spacers. The supported catalyst showed enhanced catalytic performance toward Sonogashira reaction of aryl halides with phenylacetylene in water solvent compared with the homogeneous analogues, and it could be readily recycled and reused several times without discernible loss of its activity.  相似文献   

7.
An efficient process to produce boron cluster–graphene oxide nanohybrids that are highly dispersible in water and organic solvents is established for the first time. Dispersions of these nanohybrid materials in water were extraordinarily stable after one month. Characterization of hybrids after grafting of appropriate cobaltabisdicarbollide and closo‐dodecaborate derivatives onto the surface of graphene oxide (GO) was done by FT‐IR, XPS, and UV/Vis. Thermogravimetric analysis (TGA) clearly shows a higher thermal stability for the modified‐GO nanohybrids compared to the parent GO. Of particular note, elemental mapping by energy‐filtered transmission electron microscopy (EFTEM) reveals that a uniform decoration of the graphene oxide surface with the boron clusters is achieved under the reported conditions. Therefore, the resulting nanohybrid systems show exceptional physico‐chemical and thermal properties, paving the way for an enhanced processability and further expanding the range of application for graphene‐based materials.  相似文献   

8.
The morphology‐ and size‐controlled synthesis of branched Pt nanostructures on graphene is highly favorable for enhancing the electrocatalytic activity and stability of Pt. Herein, a facile approach is developed for the efficient synthesis of well‐dispersed Pt nanoflowers (PtNFs) on the surface of polydopamine (PDA)‐modified reduced graphene oxide (PDRGO), denoted as PtNFs/PDRGO, in high yield. The synthesis was performed by a simple heating treatment of an aqueous solution that contained K2PtCl4 and PDA‐modified graphene oxide (GO) without the need for any additional reducing agent, seed, surfactant, or organic solvent. The coated PDA serves not only as a reducing agent, but also as cross‐linker to anchor and stabilize PtNFs on the PDRGO support. The as‐prepared PtNFs/PDRGO hybrid, with spatially and locally separated PtNFs on PDRGO, exhibits superior electrocatalytic activity and stability toward both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in alkaline solutions.  相似文献   

9.
γ‐Al2O3 nanoflakes are decorated on the surface of graphene nanosheets by hydrothermal method. The chemical structures, composition, and morphology of the graphene nanohybrid are characterized. Alumina nanoflake‐coated graphene nanohybrid is incorporated into polypropylene (PP) matrix by master batch‐based melt mixing method. The effects of alumina‐graphene nanohybrid on the thermal stability and combustion behavior of PP are investigated. More char residue is left for PP composite containing alumina‐graphene nanohybrid. Peak heat release rate of pure PP is greatly decreased by this nanohybrid, corresponding to 30.6% reduction. Fire safety of PP is considerably enhanced. Flame retardant mechanisms are concluded based on the combustion results and char analysis. The barrier effect of graphene and catalytic charring actions of γ‐Al2O3 nanoflakes make the contribution to the enhanced flame retardant properties.  相似文献   

10.
《中国化学》2018,36(1):37-41
A novel Pt/Cu‐zeolite A/graphene based electrocatalyst was successfully prepared by chemical reduction method for methanol electrooxidation. Graphite oxide and Cu functionalized zeolite A were simultaneously reduced by NaBH4 to prepare Cu‐zeolite A/graphene support which was used to deposit Pt nanoparticles. The nanostructure and composition of as‐prepared Pt/Cu‐zeolite A/graphene composites were characterized by X‐ray diffractometer, X‐ray fluorescence, Fourier transform infrared spectrometer and scanning electron microscopy. The electrocatalytic properties of Pt/Cu‐zeolite A/graphene modified electrode for methanol oxidation were investigated by cyclic voltammetry and chronoamperometry in 0.10 mol/L H2SO4 + 0.50 mol/L CH3OH solution. Compared with Pt/zeolite A/graphene electrode and Pt/graphene electrode, Pt/Cu‐zeolite A/graphene based electrode exhibited obviously enhanced current and higher electrocatalytic activity for methanol electrooxidation. The increased electrocatalytic activity was attributed to the presence of zeolite A and reduced graphene oxide based dual template, which significantly increased the effective electrode surface and facilitated the diffusion of analytes into the electroactive catalyst.  相似文献   

11.
Herein, we present an electrochemically assisted method for the reduction of graphene oxide (GO) and the assembly of polyoxometalate clusters on the reduced GO (rGO) nanosheets for the preparation of nanocomposites. In this method, the Keggin‐type H4SiW12O40 (SiW12) is used as an electrocatalyst. During the reduction process, SiW12 transfers the electrons from the electrode to GO, leading to a deep reduction of GO in which the content of oxygen‐containing groups is decreased to around 5 %. Meanwhile, the strong adsorption effect between the SiW12 clusters and rGO nanosheets induces the spontaneous assembly of SiW12 on rGO in a uniformly dispersed state, forming a porous, powder‐type nanocomposite. More importantly, the nanocomposite shows an enhanced capacity of 275 mAh g?1 as a cathode active material for lithium storage, which is 1.7 times that of the pure SiW12. This enhancement is attributed to the synergistic effect of the conductive rGO support and the well‐dispersed state of the SiW12 clusters, which facilitate the electron transfer and lithium‐ion diffusion, respectively. Considering the facile, mild, and environmentally benign features of this method, it is reasonable as a general route for the incorporation of more types of functional polyoxometalates onto graphene matrices; this may allow the creation of nanocomposites for versatile applications, for example, in the fields of catalysis, electronics, and energy storage.  相似文献   

12.
A novel graphene‐family ternary composite with high catalytic activity has been developed by using simple synthetic methods. The graphene‐based ternary composite has abundant positively charged Au NRs, which greatly improved the catalytic properties of the graphene‐family of peroxidase mimetics, because of the high electron‐transfer rate of graphene and the synergistic interaction of three components. Sensitive detection of glycan expression on K562 cell surface can be achieved with a low detection limit of 10 cells. This finding constitutes a novel graphene‐family hybrid nanomaterials‐based peroxidase mimetic that is expected to be applied widely in the construction of simple, sensitive, and selective biosensors for nucleic acids and proteins both inside and outside of cells through catalytic reaction of H2O2.  相似文献   

13.
A new analogue of graphene containing boron, carbon and nitrogen (BCN) has been obtained by the reaction of high‐surface‐area activated charcoal with a mixture of boric acid and urea at 900 °C. X‐ray photoelectron spectroscopy and electron energy‐loss spectroscopy reveal the composition to be close to BCN. The X‐ray diffraction pattern, high‐resolution electron microscopy images and Raman spectrum indicate the presence of graphite‐type layers with low sheet‐to‐sheet registry. Atomic force microscopy reveals the sample to consist of two to three layers of BCN, as in a few‐layer graphene. BCN exhibits more electrical resistivity than graphene, but weaker magnetic features. BCN exhibits a surface area of 2911 m2 g?1, which is the highest value known for a BxCyNz composition. It exhibits high propensity for adsorbing CO2 (≈100 wt %) at 195 K and a hydrogen uptake of 2.6 wt % at 77 K. A first‐principles pseudopotential‐based DFT study shows the stable structure to consist of BN3 and NB3 motifs. The calculations also suggest the strongest CO2 adsorption to occur with a binding energy of 3.7 kJ mol?1 compared with 2.0 kJ mol?1 on graphene.  相似文献   

14.
We propose a mechanism for defect‐assisted covalent binding of graphene to the surface of amorphous silica (a‐SiO2) based on first‐principles density functional calculations. Our calculations show that a dioxasilirane group (DOSG) on a‐SiO2 may react with graphene to form two Si? O? C linkages with a moderate activation barrier (≈0.3 eV) and considerable exothermicity (≈1.0 eV). We also examine DOSG formation via the adduction of molecular O2 to a silylene center, which is an important surface defect in a‐SiO2, and briefly discuss modifications in the electronic structure of graphene upon the DOSG‐assisted chemical binding onto the a‐SiO2 surface.  相似文献   

15.
A nickel hydroxide (Ni(OH)2)/3D‐graphene composite is used as monolithic free‐standing electrode for enzymeless electrochemical detection of glucose. Ni(OH)2 nanoflakes are synthesized by using a simple solution growth procedure on 3D‐graphene foam which was grown by chemical vapor deposition (CVD). The pore structure of 3D‐graphene allows easy access to glucose with high surface area, which leads to glucose detection with an ultrahigh sensitivity of 3.49 mA mM?1 cm?2 and a significant lower detection limit up to 24 nM. Cyclic voltammetry (CV) and potentionstatic mode is used for non‐enzymatic glucose sensing. The impedance and effective surface area have been studied well. The high sensitivity, low detection limit and simple configuration of Ni(OH)2/three dimensional (3D)‐graphene composite electrodes can evoke its industrial application in glucose sensing devices.  相似文献   

16.
The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self‐assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well‐controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet‐immersion method, transition‐metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three‐dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium‐ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra‐high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4–graphene composites can deliver a reversible specific capacity of 1427.5 mAh g?1 at a high current density of 1000 mA g?1 as anode materials in lithium‐ion batteries. Furthermore, nanoporous Co3O4–graphene composites achieved a high supercapacitance of 424.2 F g?1. This work demonstrated that the as‐developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications.  相似文献   

17.
《Electroanalysis》2017,29(6):1543-1553
A graphene‐functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4‐carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer‐modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4‐carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye‐labeled insulin (insulin‐FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9–10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of −1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin‐FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC‐labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene‐functionalized carbon fiber electrode demonstrated significant advantages in the signal‐stimulated insulin release comparing with the carbon fiber electrode without the graphene species.  相似文献   

18.
First‐principles DFT calculations are carried out to study the changes in structures and electronic properties of two‐dimensional single‐layer graphene in the presence of non‐covalent interactions induced by carbon and boron fullerenes (C60, C70, C80 and B80). Our study shows that larger carbon fullerene interacts more strongly than the smaller fullerene, and boron fullerene interacts more strongly than that of its carbon analogue with the same nuclearity. We find that van der Waals interactions play a major role in governing non‐covalent interactions between the adsorbed fullerenes and graphene. Moreover, a greater extent of van der Waals interactions found for the larger fullerenes, C80 and B80, relative to smaller C60, and consequently, results in higher stabilisation. We find a small amount of electron transfer from graphene to fullerene, which gives rise to a hole‐doped material. We also find changes in the graphene electronic band structures in the presence of these surface‐decorated fullerenes. The Dirac cone picture, such as that found in pristine graphene, is significantly modified due to the re‐hybridisation of graphene carbon orbitals with fullerenes orbitals near the Fermi energy. However, all of the composites exhibit perfect conducting behaviour. The simulated absorption spectra for all of the graphene–fullerene hybrids do not exhibit a significant change in the absorption peak positions with respect to the pristine graphene absorption spectrum. Additionally, we find that the hole‐transfer integral between graphene and C60 is larger than the electron‐transfer integrals and the extent of these transfer integrals can be significantly tuned by graphene edge functionalisation with carboxylic acid groups. Our understanding of the non‐covalent functionalisation of graphene with various fullerenes would promote experimentalists to explore these systems, for their possible applications in electronic and opto‐electronic devices.  相似文献   

19.
We present a facile route for the preparation of TiO2–graphene composites by in situ growth of TiO2 in the interlayer of inexpensive expanded graphite (EG) under solvothermal conditions. A vacuum‐assisted technique combined with the use of a surfactant (cetyltrimethylammonium bromide) plays a key role in the fabrication of such composites. Firstly, the vacuum environment promotes full infusion of the initial solution containing Ti(OBu)4 and the surfactant into the interlayers of EG. Subsequently, numerous TiO2 nanoparticles uniformly grow in situ in the interlayers with the help of the surfactant, which facilitates the exfoliation of EG under the solvothermal conditions in ethanol, eventually forming TiO2–graphene composites. The as‐prepared samples have been characterized by Raman and FTIR spectroscopies, SEM, TEM, AFM, and thermogravimetic analysis. It is shown that a large number of TiO2 nanoparticles homogeneously cover the surface of high‐quality graphene sheets. The graphene exhibits a multi‐layered structure (5–7 layers). Notably, the TiO2–graphene composite (only 30 wt % of which is TiO2) synthesized by subsequent thermal treatment at high temperature under nitrogen shows high photocatalytic activity in the degradation of phenol under visible and UV lights in comparison with bare Degussa P25. The enhanced photocatalytic performance is attributed to increased charge separation, improved light absorbance and light absorption width, and high adsorptivity for pollutants.  相似文献   

20.
Graphene research is currently at the frontier of electrochemistry. Many different graphene‐based materials are employed by electrochemists as electrodes in sensing and in energy‐storage devices. Because the methods for their preparation are inherently different, graphene materials are expected to exhibit different electrochemical behaviors depending on the functionalities and density of defects present. Electrochemical treatment of these “chemically modified graphenes” (CMGs) represents an easy approach to alter surface functionalities and consequently tune the electrochemical performance. Herein, we report a preliminary electrochemical characterization of four common chemically modified graphenes, namely: graphene oxide, graphite oxide, chemically reduced graphene oxide, and thermally reduced graphene oxide. These CMGs were compared with graphite as a reference material. Cyclic voltammetry was used to ascertain the chemical functionalities present and to understand the potential ranges in which the materials were electroactive. Electrochemical treatment with either an oxidative or a reductive fixed potential were then carried out to activate these chemically modified graphenes. The effects of such electrochemical treatments on their electrocatalytic properties were then investigated by cyclic voltammetry in the presence of well‐known redox probes, such as [Fe(CN)6]4?/3?, Fe3+/2+, [Ru(NH3)6]2+/3+, and ascorbic acid. Thermally reduced graphene oxide exhibited the best electrochemical behavior amongst all of the CMGs, with the fastest rate of heterogeneous electron transfer (HET) and the lowest overpotentials. These findings will have far‐reaching consequences for the evaluation of different CMGs as electrode materials in electrochemical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号