首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
复合微乳液聚合制备P(MMA-UA)纳米乳胶粒子的研究   总被引:14,自引:0,他引:14  
将聚氨酯预聚体可聚合乳化剂 (APUA)和甲基丙烯酸甲酯 (MMA)的复合微乳液体系 ,分别用水溶性过硫酸钾 (K2 S2 O8)和油溶性偶氮二异丁腈 (AIBN)作引发剂 ,进行微乳液聚合研究 ,制备了P(MMA UA)复合纳米乳胶粒子 .研究了APUA用量、聚合温度对聚合动力学的影响 ;用透射电子显微镜 (TEM)观察了不同乳化剂浓度及引发剂体系对胶粒形态、大小及分布的影响 .结果表明 ,用可聚合乳化剂APUA可制得稳定性很好的P(MMA UA)纳米级核 壳型乳胶粒子 ,乳胶粒径在 5 0nm左右 .随着乳化剂用量增加 ,粒子变小 ;不同类型的引发剂对胶乳的性质有较大影响 ,以APUA为乳化剂 ,K2 S2 O8为引发剂 ,在聚合反应过程中或在聚合反应后的放置中 ,会出现P(MMA UA)的纳米水凝胶 (Nanogel)现象 .  相似文献   

2.
Nanometer‐sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post‐milling recrystallization method. This method is suitable for producing nanometer‐sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer‐sized zeolite A, nanometer‐sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer‐sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future.  相似文献   

3.
With the goal of imposing shape and structure on supramolecular gels, we combine a low‐molecular‐weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended interpenetrating network or core–shell‐structured gel beads—a rare example of a supramolecular gel formulated inside discrete gel spheres. The self‐assembled LMWG retains its unique properties within the beads, such as remediating PdII and reducing it in situ to yield catalytically active Pd0 nanoparticles. A single PdNP‐loaded gel bead can catalyse the Suzuki–Miyaura reaction, constituting a simple and easy‐to‐use reaction‐dosing form. These uniquely shaped and structured LMWG‐filled gel beads are a versatile platform technology with great potential in a range of applications.  相似文献   

4.
MAA存在下VAc/BA核壳乳液聚合过程中的胶粒形态研究   总被引:1,自引:0,他引:1  
用TEM和电位滴定法对不同配方和工艺条件得到的胶粒形态结构和羧基分别进行了表征。结果表明:加入甲基丙烯酸有利于胶粒的稳定和形成规则的核壳胶粒。半连续加料不会形成完全反转的核壳结构,但是,核层在反应过程中由于聚合物簇的迁移会造成形变。由于胶粒中聚合物浓度高,粘度大,因而胶粒形态变化受动力学影响甚大,羧基分布主要是由动力学确定的。  相似文献   

5.
A new method was proposed to prepare binary composite colloidal crystal hydrogels by interlocking the as-prepared polystyrene/sulfonated polystyrene core/shell colloidal crystal hydrogel with a second responsive gel. The shell thickness thus the core size were synchronously controlled by altering the sulfonation time and temperature. The proper monomers were radically polymerized forming the second gel within the first gel network. The composition and structure were confirmed. Nanopatterued hydrogel including porous bulk hydrogels and surface patterned hydrogels were derived by properly treating the binary composite hydrogels. Specially, some typical patterns such as arrays of “nano-bowls” ,arrays of “nano-ribbons” and “nano-mask” were achieved by changing the treatment method such as by immersion in the solvent, after solvent evaporation from the sample surface during high rate rotation. This work provides a method to prepare nanopatterued hydrogels.  相似文献   

6.
A series of core–shell‐structured composite molecular sieves comprising zeolite single crystals (i.e., ZSM‐5) as a core and ordered mesoporous silica as a shell were synthesized by means of a surfactant‐directed sol–gel process in basic medium by using cetyltrimethylammonium bromide (CTAB) as a template and tetraethylorthosilicate (TEOS) as silica precursor. Through this coating method, uniform mesoporous silica shells closely grow around the anisotropic zeolite single crystals, the shell thickness of which can easily be tuned in the range of 15–100 nm by changing the ratio of TEOS/zeolite. The obtained composite molecular sieves have compact meso‐/micropore junctions that form a hierarchical pore structure from ordered mesopore channels (2.4–3.0 nm in diameter) to zeolite micropores (≈0.51 nm). The short‐time kinetic diffusion efficiency of benzene molecules within pristine ZSM‐5 (≈7.88×10?19 m2 s?1) is almost retainable after covering with 75 nm‐thick mesoporous silica shells (≈7.25×10?19 m2 s?1), which reflects the greatly opened junctions between closely connected mesopores (shell) and micropores (core). The core–shell composite shows greatly enhanced adsorption capacity (≈1.35 mmol g?1) for large molecules such as 1,3,5‐triisopropylbenzene relative to that of pristine ZSM‐5 (≈0.4 mmol g?1) owing to the mesoporous silica shells. When Al species are introduced during the coating process, the core–shell composite molecular sieves demonstrate a graded acidity distribution from weak acidity of mesopores (predominant Lewis acid sites) to accessible strong acidity of zeolite cores (Lewis and Brønsted acid sites). The probe catalytic cracking reaction of n‐dodecane shows the superiority of the unique core–shell structure over pristine ZSM‐5. Insight into the core–shell composite structure with hierarchical pore and graded acidity distribution show great potential for petroleum catalytic processes.  相似文献   

7.
Time-series hydrothermal syntheses from two organic-cation-free gels with different compositions were employed to study the factors that control the final size of zeolite L crystals. The first gel had a starting K/Al ratio of 10, whereas in the second one it was three times lower. The relatively simple chemical composition of the starting gels and the combination of complementary characterization methods allowed us to track down the different stages of transformation of the initial amorphous gels into zeolite crystals and the factors that control the nucleation and growth processes. The role of the starting mixture components in the formation of the primary amorphous particles was explored. It was found that the profoundly different reaction kinetics in the two systems are caused by the difference in diffusion rates, which in turn are controlled by the extent of the polymerization reactions at room temperature during mixing of the starting components prior to hydrothermal treatment. As a consequence, nucleation is fast and ubiquitous in the first system with higher water content and K/Al ratio, whereas it is slow and sporadic in the second system with lower water content and K/Al ratio. Ultimately, these differences in the kinetics lead to the formation of two distinctly different patterns of crystal-size distribution, with a large number of small nanocrystals in the first sample and fewer large crystals in the second sample. The new findings put zeolite crystal growth on a rational basis that would enable the control of zeolite crystal size in similar organic-template-free systems.  相似文献   

8.
In this work, an attempt has been made to modify the shape and nanostructure of core-shell materials, which have been usually generated on the basis of amorphous spherical cores. Novel core-shell silicate particles, each of which consists of a silicalite-1 zeolite crystal core and mesoporous shell (ZCMS), were synthesized for the first time. The ZCMS core-shell particles are unique because they are of pseudohexagonal prismatic shape and have hierarchical porosity of both a uniform microporous core and a mesoporous shell coexisting in a particle framework. The nonspherical bimodal porous core-shell particles were then utilized as templates to fabricate a new carbon replica structure. Interestingly, the pore replication process was carried out only through the mesopores in the shell, and not through the micropores due to the narrower micropore size in the core, resulting in nonspherical carbon nanocases with a hollow core and mesoporous shell (HCMS) structure. Nonspherical silica nanocases with HCMS structure were also generated by replication using the carbon nanocases as templates, which are not possible to synthesize through other synthetic methods. Interestingly, the pseudohexagonal prismatic shape of the zeolite crystals was transferred onto the carbon and silica nanocases.  相似文献   

9.
MFI/MFI核壳分子筛合成的影响因素及结晶动力学   总被引:1,自引:0,他引:1  
以低硅铝比ZSM-5 为核, 采用二次生长法水热合成了MFI/MFI核壳分子筛. 发现对核相分子筛进行预处理是合成的关键步骤. 通过控制壳相合成过程(如合成温度、合成时间和核相分子筛加入量)可有效控制核壳分子筛的壳层生长. 以异丙苯(IPB)及1,3,5-三异丙苯(1,3,5-TIPB)裂解为探针反应, 发现与核相分子筛相比, 核壳分子筛的IPB裂解反应活性相当. 而1,3,5-TIPB裂解活性下降68%, 与外表面Al含量下降程度相近, 表明MFI/MFI核壳分子筛较好地保留了分子筛的核相反应活性. 结晶动力学计算结果表明, MFI/MFI核壳分子筛的成核活化能为51.5 kJ·mol-1, 生长活化能为26.5 kJ·mol-1.  相似文献   

10.
A new method is presented for preparing gram amounts of very small core/shell upconversion nanocrystals without additional codoping of the particles. First, ca. 5 nm β‐NaYF4:Yb,Er core particles are formed by the reaction of sodium oleate, rare‐earth oleate, and ammonium fluoride, thereby making use of the fact that a high ratio of sodium to rare‐earth ions promotes the nucleation of a large number of β‐phase seeds. Thereafter, a 2 nm thick NaYF4 shell is formed by using 3–4 nm particles of α‐NaYF4 as a single‐source precursor for the β‐phase shell material. In contrast to the core particles, however, these α‐phase particles are prepared with a low ratio of sodium to rare‐earth ions, which efficiently suppresses an undesired nucleation of β‐NaYF4 particles during shell growth.  相似文献   

11.
Composite microspheres composed of monodispersed poly(St-co-MAA) latices with diameter about 260 nm as core and Ag nanocrystals as shell were prepared by an in situ reduction method. The shell thickness could be controlled in the range of 15--45 nm by this coating process. The structure and the composition of the core-shell microspheres were characterized by transmission electron microscopy (TEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TG). The formation of the composite microspheres is explained by the nucleation of silver on the surface of the latices followed by growth of the silver shell.  相似文献   

12.
Summary: Monodisperse thermosensitive PS‐NIPA core‐shell particles composed of a PS core and a cross‐linked PNIPA shell can be successfully synthesized by a novel method: photoemulsion polymerization. Cryo‐TEM images indicate clearly the core‐shell morphology of the PS‐NIPA particles: A homogeneous regular PNIPA shell has been affixed on the spherical PS core. DLS measurements indicate that the obtained PS‐NIPA latex particles are thermosensitive. The shell of PNIPA networks with different cross‐linking densities can shrink and re‐swell with temperature and the volume transition temperature is around 32 °C in all cases.

Cryo‐TEM image of PS‐NIPA core‐shell particles.  相似文献   


13.
反应性复合乳液的合成、表征及其交联反应   总被引:1,自引:0,他引:1  
利用种子半连续乳液聚合方法合成了核层或壳层带有环氧基以及壳层带有羧基的3种不同核/壳结构的乳胶粒子,通过物理共混带环氧基和羧基的乳胶粒子,得到了两种反应性复合乳液.利用透射电镜和激光动态光散射对乳胶粒子进行了表征,其粒径分布较窄,粒径分布的多分散系数为0.062,平均粒径约76 nm,乳胶粒子具有明显的核/壳结构.通过胶膜的凝胶率和膨胀率的测定和红外光谱分析对反应性复合乳液中乳胶粒子的扩散及交联反应进行了研究,并探讨了不同核壳结构复合乳液对涂膜机械性能的影响.研究表明,当反应性复合乳液中的环氧基和羧基分别分布在乳胶粒子的核层和壳层时,有利于聚合物分子链的充分扩散和化学交联反应的进行,从而提高涂膜的物理化学性能,当甲基丙烯酸缩水甘油酯(GMA)含量为10 wt%时,涂膜的拉伸强度达20.3 MPa.  相似文献   

14.
Hollow aluminosilicate zeolite beta was successfully synthesized by adding CIT‐6, that is, zincosilicate zeolite, which has the same topology as beta, as seeds to the Na‐aluminosilicate gel without the need for organic structure‐directing agents. One important factor in the successful organic structure‐directing agent (OSDA)‐free synthesis of hollow beta crystals is the solubility of the seed crystals in alkaline media. CIT‐6 was less stable than aluminosilicate zeolite beta in alkaline media and the solubility changed depending on whether the crystals were calcined or not. The hollow beta could be obtained by using the uncalcined CIT‐6 seed crystals. The volumes of intra‐crystalline voids were tuned by changing the reaction time and the initial gel compositions, such as the SiO2/Al2O3 and Na2O/SiO2 ratios. We estimated that the intra‐crystalline voids were formed through the dissolution of the seed crystals, just after the crystal growth of new beta on the outer surface of the seeds. In addition, new crystal growth toward inside of the void was also observed by TEM. On the basis of the characterization data, such as chemical analysis, N2‐adsorption/desorption measurements, and TEM observation, a formation mechanism of the intra‐crystalline voids is proposed and discussed.  相似文献   

15.
The microstructure of silica in basic aqueous solutions containing organic cations and prepared from monomeric precursors is reviewed and interpreted within the context of classical ideas of self-assembly of molecular aggregates. The solution properties can be understood by using the pseudo-phase separation approach coupled to the acid-base chemistry of silanol groups and the Poisson-Boltzmann equation. The silica nanoparticles frequently observed in these systems have a core-shell structure with silica in the core and the organic cations at the shell. Individual particles are observed when the forces between particles are repulsive-as is the case for small cations such as tetramethylammonium or tetrapropylammonium-and extended structures such as M41S materials are formed when the forces are attractive--as is the case for surfactants such as cetyltrimethylammonium. These ideas are useful to understand the evolution of zeolite synthesis gels from nucleation to crystal growth. Although at room temperature the silica and the organic cations are segregated, upon heating the organic cations are embedded within the particles. This transformation signals the onset of structure direction whereby the size and geometry of the organic cation induce changes in the structure of silica that may lead to zeolite nuclei.  相似文献   

16.
Polytetrafluoroethylene (PTFE)‐polyacrylate core–shell nanoparticles were produced by using PTFE micropowder and acrylate via seeded emulsion polymerization in the presence of fluorosurfactant. The properties of emulsion under various polymerization conditions were investigated and optimized. The chemical composition of the PTFE‐polyacrylate nanoparticles was characterized by Fourier‐transform infrared spectrometry (FTIR). The particle size and core–shell structure of the resulting PTFE‐polyacrylate nanoparticles were confirmed by transmission electron microscopy (TEM). Wettability of the PTFE‐polyacrylate core–shell particles was higher than the pristine PTFE. The formation of this kind of PTFE‐polyacrylate core–shell nanoparticles could improve the compatibility of PTFE with other materials because PTFE is covered by polyacrylate shell, which make them promising in various fields. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Understanding the crystallization of organic molecules is a long‐standing challenge. Herein, a mechanistic study on the self‐assembly of crystalline arrays in aqueous solution is presented. The crystalline arrays are assembled from perylene diimide (PDI) amphiphiles bearing a chiral N‐acetyltyrosine side group connected to the PDI aromatic core. A kinetic study of the crystallization process was performed using circular dichroism spectroscopy combined with time‐resolved cryogenic transmission electron microscopy (cryo‐TEM) imaging of key points along the reaction coordinate, and molecular dynamics simulation of the initial stages of the assembly. The study reveals a complex self‐assembly process starting from the formation of amorphous aggregates that are transformed into crystalline material through a nucleation–growth process. Activation parameters indicate the key role of desolvation along the assembly pathway. The insights from the kinetic study correlate well with the structural data from cryo‐TEM imaging. Overall, the study reveals four stages of crystalline self‐assembly: 1) collapse into amorphous aggregates; 2) nucleation as partial ordering; 3) crystal growth; and 4) fusion of smaller crystalline aggregates into large crystals. These studies indicate that the assembly process proceeds according to a two‐step crystallization model, whereby initially formed amorphous material is reorganized into an ordered system. This process follows Ostwald’s rule of stages, evolving through a series of intermediate phases prior to forming the final structure, thus providing an insight into the crystalline self‐assembly process in aqueous medium.  相似文献   

18.

Nanocomposite latex particles, with a silica nanoparticle as core and crosslinked poly(tert‐butylmethacrylate) as shell, were prepared in this work. Silica nanoparticles were first synthesized by a sol‐gel process, and then modified by 3‐(trimethoxysilyl)propyl methacrylate (MPS) to graft C?C groups on their surfaces. The MPS‐modified silica nanoparticles were characterized by elemental analysis, FTIR, and 29Si NMR and 13C‐NMR spectroscopy; the results showed that the C?C groups were successfully grafted on the surface of the silica nanoparticles and the grafted substance was mostly the oligomer formed by the hydrolysis and condensation reaction of MPS. Silica/poly(tert‐butylmethacrylate) core/shell nanocomposite latex particles were prepared via seed emulsion polymerization using the MPS‐modified silica nanoparticle as seed, tert‐butylmethacrylate as monomer and ethyleneglycol dimethacrylate as crosslinker. Their core/shell nanocomposite structure and chemical composition were characterized by means of TEM and FTIR, respectively, and the results indicated that silica/poly(tert‐butylmethacrylate) core/shell nanocomposite latex particles were obtained.  相似文献   

19.
The aim of our work is the synthesis and characterization of colloidal core–shell particles with a zeolite core and an environmentally responsive shell. We have synthesized colloidal ZSM-5 zeolite and modified the surface with 3-(trimethoxysilyl)propyl methacrylate in order to introduce double bonds at the surface. The cross-linked polymeric shell was prepared by precipitation polymerization using the functionalized zeolite particles as seeds. We employed thermoresponsive poly(N-isopropylacrylamide) and pH-responsive poly(vinylpyridine) as the polymeric shell, respectively. The temperature- and pH-depending swelling and deswelling of the core–shell particles were characterized with dynamic light scattering techniques. Transmission electron microscopy pictures show the morphology of the synthesized particles. It is proposed that these types of bifunctional core–shell particles could be of use for controlled uptake and release applications and separation of molecules.  相似文献   

20.
We report here on the preparation of novel luminescent core‐shell material by initial coating with polyelectrolytes and subsequent with a silica shell on the lanthanide complexes loaded zeolite L microcrystals. Lanthanide complexes loaded zeolite L was prepared by insertion of 2‐thenoyltrifluoroacetone (TTA) into the nanochannels of zeolite crystals by gas diffusion of TTA to Eu3+ exchanged zeolite L, coating a silica shell on the lanthanide complexes loaded zeolite L resulted to the novel luminescent core‐shell material. The luminescent core‐shell material was further functionalized with silylated terbium(III) complex and the obtained material was used as the luminescence sensing of dipicolinic acid (DPA), which is a major constituent of many pathogenic spore‐forming bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号