首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
This article presents an analytical review of the author’s results and the literature concerning the nature of species resulting from NO and CO adsorption on the unreconstructed (1 × 1) and reconstructed hexagonal (hex) Pt(100) surfaces, including specific features of the reactions between these species. At 300 K, both surfaces adsorb NO and CO mainly in their molecular states. When adsorbed on Pt(100)-1 × 1, the NOads and COads molecules are uniformly distributed on the surface. Under the same conditions, the hexagonal surface undergoes adsorption-induced reconstruction with the formation of NOads/1 × 1 and COads/1 × 1 islands, which are areas of the unreconstructed phase saturated with adsorbed molecules and surrounded with the adsorbate-free hex phase. In adsorption on structurally heterogeneous surfaces containing both hex and 1 × 1 areas, the 1 × 1 and hex phases are occupied in succession, the latter undergoing reconstruction into the 1 × 1 phase. The reaction between NO and CO on the unreconstructed surfaces occurs even at room temperature and results in the formation of N2 and CO2 in quantitative yield. On the hexagonal surface, a stable layer of adsorbed molecules as (NOads + COads)/1 × 1 mixed islands forms under these conditions. Above 350 K, the reaction in the mixed islands is initiated by the desorption of small amounts of the initial compounds, and this is followed by rapid self-acceleration leading to a surface explosion yielding N2, CO2, and N2O (minor product). These products show themselves as very narrow desorption peaks in the temperature-programmed reaction spectrum.  相似文献   

2.
High resolution electron energy loss spectroscopy (HREELS), temperature-programmed desorption (TPD) and temperature-programmed reaction (TPR) were used to study NO adsorption and the reactivity of COads and NOads molecules on Pd(110) and Pt(100) single crystal surfaces. Compared to the Pt(100)-(1 × 1) surface, the unreconstructed Pt(100)-hex surface is chemically inert toward NO dissociation into Nads and Oads atoms. When a mixed adsorbed COads + NOads layer is heated, a so-called surface explosion is observed when the reaction products (N2, CO2, and N2O) synchronously desorb in the form of sharp peaks with a half-width of 7-20 K. The shape specificity of TPR spectra suggests that the vacancy mechanism consists of the autocatalytic character of the reaction initiated by the formation an initial concentration of active sites due to partial desorption of molecules from the COads + NOads layer upon heating to high temperatures. Kinetic experiments carried out on the Pd(110) surface at a constant reaction pressure and a linear increase in the temperature confirm the explosive mechanism of the reaction NO + CO.  相似文献   

3.
The state of surface Pt atoms in the Pt/SO4/ZrO2/Al2O3 catalyst and the effect of the state of platinum on its adsorption and catalytic properties in the reaction of n-hexane isomerization were studied. The Pt-X/Al2O3 alumina-platinum catalysts modified with various halogens (X = Br, Cl, and F) and their mechanical mixtures with the SO4/ZrO2/Al2O3 superacid catalyst were used in this study. With the use of IR spectroscopy (COads), oxygen chemisorption, and oxygen-hydrogen titration, it was found that ionic platinum species were present on the reduced form of the catalysts. These species can adsorb to three hydrogen atoms per each surface platinum atom. The specific properties of ionic platinum manifested themselves in the formation of a hydride form of adsorbed hydrogen. It is believed that the catalytic activity and operational stability of the superacid system based on sulfated zirconium dioxide were due to the participation of ionic and metallic platinum in the activation of hydrogen for the reaction of n-hexane isomerization.  相似文献   

4.
The study revealed additional channels of inelastic electron scattering, which accompany the threshold excitation of the substrate Pt4d level — ionization of the valent states of adsorbed particles chemically bonded to the excited atom, and excitation of the surface plasmon vibrations. The conjugate excitation of this type shows up as a series of typical satellites in the spectra of disappearance potentials, which reflects the structure of valent states of adsorbed particles. Analysis of the satellite structure revealed the intermediate formation of NH x,ads particles in the reaction NOgas + Hads on the surface of Pt(100) single crystal and, taking into account the earlier data, made it possible to formulate a general mechanism of selfoscillations in the NO + H2 reaction on platinum metals. Mathematical modeling of reaction kinetics on the Pt(100) surface within the suggested mechanism demonstrated the presence of regular self-oscillations of the reaction rate at invariable values of the step constants.  相似文献   

5.
The mechanism of catalytic CO oxidation on Pt(100) and Pd(110) single-crystal surfaces and on Pt and Pd sharp tip (~103 Å) surfaces has been studied experimentally by temperature-programmed reaction, temperature desorption spectroscopy, field electron microscopy, and molecular beam techniques. Using the density functional theory the equilibrium states and stretching vibrations of oxygen atoms adsorbed on the Pt(100) surface have been calculated. The character of the mixed adsorption layer was established by high resolution electron energy loss spectroscopy—molecular adsorption (O2ads, COads) on Pt(100)-hex and dissociative adsorption (Oads, COads) on Pt(100)-(1×1). The origin of kinetic self-oscillations for the isothermal oxidation of CO in situ was studied in detail on the Pt and Pd tips by field electron microscopy. The initiating role of the reversible phase transition (hex) ? (1 × 1) of the Pt(100) nanoplane in the generation of regular chemical waves was established. The origination of self-oscillations and waves on the Pt(100) nanoplane was shown to be caused by the spontaneous periodical transition of the metal from the low-active state (hex) to the highly active catalytic state (1 × 1). A relationship between the reactivity of oxygen atoms (Oads) and the concentration of COads molecules was revealed for the Pd(110) surface. Studies using the isotope label 18Oads demonstrated that the low-temperature formation of CO2 at 150 K is a result of the reaction of CO with the highly reactive state of atomic oxygen (Oads). The possibility of the low-temperature oxidation of CO via interaction with the so-called “hot” oxygen atoms (Ohot) appearing on the surface at the instant of dissociation of O2ads molecules was studied by the molecular beam techniques.  相似文献   

6.
The co-adsorption of ammonia and carbon monoxide on the Pt(111) surface was studied at temperatures <300 K using high-resolution electron energy loss spectroscopy (HREELS). The state of ammonia and carbon monoxide molecules in the co-adsorption layer was established to differ significantly from their state in individual adsorption layers. The adsorption of CO on a clean surface occurs with the primary filling of single-bound terminal sites, whereas the bridging sites are filled preferably by CO molecules in the presence of NH3,ads. The symmetry axis of ammonia molecules adsorbed on the clean surface is parallel to the normal to the surface, whereas in the co-adsorption layers the interaction with COads molecules results in the deviation of the symmetry axis toward the surface. Presumably, the observed changes in the state of adsorbed molecules are due to the donor-acceptor interaction inducing the electron density transfer from ammonia molecules across the metal surface to CO molecules.  相似文献   

7.
The decomposition mechanisms of methanol on five different Pt surfaces, the flat surface of Pt(111), Pt‐defect, Pt‐step, Pt(110)(1 × 1), and Pt(110)(2 × 1), have been studied with the DFT‐GGA method using the repeated slab model. The adsorption energies under the most stable configuration of the possible species and the activation energy barriers of the possible elementary reactions involved are obtained in this work. Through systematic calculations for the reaction mechanism of methanol decomposition on these surfaces, we found that such a reaction shows the same reaction mechanism on these Pt‐based model catalysts, that is, the final products are all H (Hads) and CO (COads) via O? H bond breaking in methanol and C? H bond scission in methoxy. These results are in general agreement with the previous experimental observations. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010.  相似文献   

8.
Steady State Isotopic Transient Kinetic Analysis (SSITKA) experiments using on-line Mass Spectrometry (MS) and in situ Diffuse Reflectance Infrared Fourier-Transform Spectroscopy (DRIFTS) have been performed to study essential mechanistic aspects of the Selective Catalytic Reduction of NO by H2 under strongly oxidizing conditions (H2-SCR) in the 120–300°C range over a novel 0.1 wt % Pt/MgO-CeO2 catalyst. The N-path of reaction from NO to the N2 gas product was probed by following the 14NO/H2O215NO/H2/O2 switch (SSITKA-MS and SSITKA-DRIFTS) at 1 bar total pressure. It was found that the N-pathway of reaction involves the formation of two active NO x species different in structure, one present on MgO and the other one on the CeO2 support surface. Inactive adsorbed NO x species were also found on both the MgO-CeO2 support and the Pt metal surfaces. The concentration (mol/g cat) of active NO x leading to N2 was found to change only slightly with reaction temperature in the 120–300°C range. This leads to the conclusion that other intrinsic kinetic reasons are responsible for the volcano-type conversion of NO versus the reaction temperature profile observed.  相似文献   

9.
An electrochemical kinetic investigation of nitrite oxidation to nitrate on RuO2 is discussed. The process is studied by cyclic voltammetry, steady-state measurements and potential step measurements. The overall oxidation reaction is a two-electron process where the first step involves a reversible charge transfer: NO2 ⇔ NO2 + e The one-electron oxidation of nitrite yields adsorbed NO2 which is further oxidized to adsorbed (NO2)+ and subsequently desorbed via a chemical reaction. In the general case, fit of experimental data is obtained with adsorption described by a Temkin isotherm unless the electrode is pre-treated at a cathodic potential where the (NO2)ads is removed. This treatment lowers the degree of coverage by intermediates but not the nature of the slow step. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 1, pp. 142–149. The text was submitted by the authors in English.  相似文献   

10.
Cerium dioxide as a component of CuO-ZnO-CeO2/Al2O3/cordierite catalysts stabilizes their action in the decomposition of methanol by preventing carbon deposition on the surface and facilitating hydrogen formation with selectivity and yield in the range 85–96%. The optimal indices for this reaction are obtained for a CeO2-CuO/Al2O3/cordierite sample prepared using an ammonium precursor for cerium, (NH4)2Ce(NO3)6. This catalyst displays enhanced reductive capacity relative to the analogous CeO2-CuO composition prepared using Ce(NO3)3·6H2O.  相似文献   

11.
Methanol adsorption on ion‐sputtered Pt(111) surface exhibiting high concentration of vacancy islands and on (2 × 1)Pt(110) single crystal were investigated by means of photoelectron spectroscopy (PES) and thermal desorption spectroscopy. The measurements showed that methanol adsorbed at low temperature on sputtered Pt(111) and on (2 × 1)Pt(110) surfaces decomposed upon heating. The PES data of methanol adsorption were compared to the data of CO adsorbed on the same Pt single crystal surfaces. In the case of the sputtered Pt(111) surface, the dehydrogenation of HxCO intermediates is followed by the CO bond breakage. On the (2 × 1)Pt(110) surface, carbon monoxide, as product of methanol decomposition, desorbed molecularly without appearance of any traces of atomic carbon. By comparing both platinum surfaces we conclude that methanol decomposition occurs at higher temperature on sputtered Pt(111) than on (2 × 1)Pt(110). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
[Mn(NH3)6](NO3)2 crystallizes in the cubic, fluorite (C1) type crystal lattice structure (Fm \( \overline{3} \) m) with a = 11.0056 Å and Z = 4. Two phase transitions of the first-order type were detected. The first registered on DSC curves as a large anomaly at T C1 h  = 207.8 K and T C1 c  = 207.2 K, and the second registered as a smaller anomaly at T C2 h  = 184.4 K and T C2 c  = 160.8 K (where the upper indexes h and c denote heating and cooling of the sample, respectively). The temperature dependence of the full width at half maximum of the band associated with the δs(HNH)F1u mode suggests that the NH3 ligands in the high temperature and intermediate phase reorientate quickly with correlation times in the order of several picoseconds and with activation energy of 9.9 kJ mol?1. In the phase transition at T C2 c probably only a some of the NH3 ligands stop their reorientation, while the remainders continue to reorientate quickly with activation energy of 7.7 kJ mol?1. Thermal decomposition of the investigated compound starts at 305 K and continues up to 525 K in four main stages (I–IV). In stage I, 2/6 of all NH3 ligands were seceded. Stages II and III are connected with an abruption of the next 2/6 and 1/6 of total NH3, respectively, and [Mn(NH3)](NO3)2 is formed. The last molecule of NH3 per formula unit is freed at stage IV together with the simultaneous thermal decomposition of the resulting Mn(NO3)2 leading to the formation of gaseous products (O2, H2O, N2 and nitrogen oxides) and solid MnO2.  相似文献   

13.
X-ray photoelectron spectroscopy (XPS) was used to establish that the surface layer of catalysts obtained by the reduction of Ta2O5 with added Pt and Pd by hydrogen contains nonstoichiometric oxides TaOx, which enhance the activity of the catalyst. A study of the hydrogen oxidation kinetics showed that the kinetic relationships are described satisfactorily by the Eley-Riedel mechanism, according to which the reaction occurs by an interaction of hydrogen from the gas phase with adsorbed oxygen. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 44, No. 4, pp. 254–258, July–August, 2008.  相似文献   

14.
Transients of open-circuit potential observed at the reaction of hydrogen molecules with oxygen preliminarily adsorbed (Oads) on the smooth polycrystalline (pc Pt) and platinized platinum (Pt/Pt) electrodes are measured under conditions of controlled stirring of solution (0.5 M H2 SO4). The dependence of the surface coverage with OadsO) on the potential in the cause of the potential decay on pc Pt are determined. It is found that for Pt/Pt, the reaction kinetics is largely determined by diffusion of H2. For pc Pt in the range of high θO, the Eley-Ridiel mechanism is realized. For medium θO, the regions where the reaction obeys the mechanisms of Eley-Ridiel, “conjugated reactions”, and diffusion control are observed to overlap (even at the most intense stirring possible). The rate of H2 reaction with Oads is substantially higher compared with analogous reactions of CO, HCOOH, and CH3OH.  相似文献   

15.
New carbonaceous adsorbents were prepared by means of direct, physical and chemical activation of corn cobs and cherry stones as well as coffee and tobacco industry waste materials. The effect of activation method on the textural parameters, acid-base character of the surface and sorption properties toward toxic gases of the materials obtained was tested. Depending on the precursor as well as method of preparation, the final products were micro/mesoporous activated carbons of surface area reaching to 1426 m2/g, showing largely different acid-base properties of the surface. The results obtained in our study have proved that a suitable choice of the activation procedure for industrial and agricultural biodegradable waste materials permits production of cheap carbonaceous adsorbents with very high sorption capacity towards nitrogen dioxide and hydrogen sulphide reaching to 83 mg NO2/gads and 215 mg H2S/gads, respectively.  相似文献   

16.
The desorption of oxygen from polycrystalline palladium (Pd(poly)) was studied using temperature-programmed desorption (TPD) at 500–1300 K and the amounts of oxygen absorbed by palladium (n) from 0.05 to 50 monolayers. It was found that the desorption of O2 from Pd(poly), which occurred from a chemisorbed oxygen layer (Oads), in the release of oxygen from a near-surface metal layer in the course of the decomposition of PdO surface oxide, and in the release of oxygen from the bulk of palladium (Oabs), was governed by repulsive interactions between Oads atoms and the formation and decomposition of Oads-Pd*-Oabs structures (Pd* is a surface palladium atom). At θ ≤ 0.5, the repulsive interactions between Oads atoms (ɛaa = 10 kJ/mol) resulted in the desorption of O2 from Pd(poly) at 650–950 K. At 0.5 ≤ n ≤ 1.0, the release of inserted oxygen from a near-surface palladium layer occurred during TPD in the course of the migration of Oabs atoms to the surface and the formation-decomposition of Oads-Pd*-Oabs structures. As a result, the desorption of O2 occurred in accordance with a first-order reaction with a thermal desorption (TD) peak at T max ∼ 700 K. At 1.0 ≤ n ≤ 2.0, the decomposition of PdO surface oxide occurred at a constant surface cover-age with oxygen during TPD in the course of the formation-decomposition of Oads-Pd*-Oabs structures. Because of this, the desorption of O2 occurred in accordance with a zero-order reaction at low temperatures with a TD peak at T max ∼ 675 K. At 1.0 ≤ n ≤ 50, oxygen atoms diffused from deep palladium layers in the course of TPD and arrived at the surface at high temperatures. As a result, O2 was desorbed with a high-temperature TD peak at T > 750 K.  相似文献   

17.
Ammonium trinitratouranylate NH4[UO2(NO3)3] (I) single crystals have been synthesized by the reaction of aqueous solutions of diaquadinitratouranyl tetrahydrate and ammonium nitrate in the presence of nitric acid. The structure of the complex has been studied by X-ray diffraction analysis: space group \(R\bar 3c\), a = 9.361(2), c = 18.883(4) Å; V = 1433.0(5) Å3, and Z = 6. The structural units of the NH4[UO2(NO3)3] crystal—NH 4 + cations and [UO2(NO3)3]? complex anions with three bidentate cyclic nitrato groups—are on crystallographic axes \(\bar 3\). A complex three-dimensional packing arranged by the electrostatic attraction forces between counterions and the N-H...O hydrogen bonds between ammonium cations and trinitratouranylate anions is realized in the structure. X-ray diffraction analysis results are confirmed by IR spectra of NH4[UO2(NO3)3].  相似文献   

18.
It was found that only bridging and bidentate nitrate complexes were formed on the surface of Pt,Cu/ZrO2-pillared interlayered clay (ZrO2-PILC) upon the interaction with a flow of the (0.2% NO + 2.5% O2)/N2 mixture, whereas monodentate and nitrosyl complexes were not detected. The concentration of nitrate complexes on Pt,CU/ZrO2-PILC was higher and the strength of their bond to the surface was weaker than those on unmodified ZrO2-PILC. Isopropoxide and acetate complexes and coordinatively bound acetone were formed on the surface in the interaction of Pt,Cu/ZrO2-PILC with a flow of the (0.2% C3H6 + 2.5% O2)/N2 mixture. The supporting of Pt and Cu onto zirconium dioxide pillars resulted in considerable changes in the concentration and the temperature region of the existence of hydrocarbon surface compounds, as compared with ZrO2-PILC. Under reaction conditions at relatively low temperatures, isopropoxide and nitrate intermediates on the surface of Pt,Cu/ZrO2-PILC formed a complex structurally similar to adsorbed dinitropropane. At elevated temperatures, a surface nitromethane complex was formed in the interaction of the acetate complex with nitrate species. The spectrokinetic measurements demonstrated that the apparent rate constants of consumption of nitrate and nitroorganic complexes considerably increased on going from ZrO2-PILC to Pt,Cu/ZrO2-PILC. Moreover, the constants of consumption of nitroorganic and nitrate complexes were similar for both of the catalysts. This fact suggests that, on the test catalysts, nitroorganic complexes were reaction intermediates in the selective catalytic reduction of NOx (NOx SCR) with hydrocarbons. The found differences in the activation species and thermal stabilities of reactants can explain different activities of ZrO2-PILC and Pt,Cu/ZrO2-PILC in the SCR reaction of NOx with propylene in an excess of oxygen.  相似文献   

19.
Infrared spectra of CO-treated platinum hydrosols subsequently treated with acetylene, hydrogen, and oxygen reveal that v(CO)ads decreases from 2070 cm−1 with increasing gas-treatment time. This has been attributed to a reduction in the coverage of adsorbed CO. In Pt sol/CO/C2H2 systems, v(CO)ads decreases to a limiting value of ca. 2060 cm−1 after exposure to acetylene. In the Pt sol/CO/H2 systems, v(CO)ads decreases to ca. 2050 cm−1 after exposure to hydrogen gas. The lower frequency in the Pt sol/CO/H2 system has been attributed to CO adsorption on more active metal sites formed from the reduction of surface platinum oxides. Exposure of the CO-treated platinum hydrosols to O2 gas was found to cause the eventual disappearance of the v(CO)ads band in infrared spectra, which was attributed to oxidation of adsorbed CO to CO2 by weakly bound surface layers of platinum oxides formed by the oxygen treatment.  相似文献   

20.
The enthalpy change of formation of the reaction of hydrous dysprosium chloride with ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline (o-phen?H2O) in absolute ethanol at 298.15 K has been determined as (-16.12 ± 0.05) kJ?mol-1 by a microcalormeter. Thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), rate constant and kinetics parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of the reaction have also been calculated. The enthalpy change of the solid-phase reaction at 298.15 K has been obtained as (53.59 ± 0.29) kJ?molt-1 by a thermochemistry cycle. The values of the enthalpy change of formation both in liquid-phase and solid-phase reaction indicated that the complex could only be synthesized in liquid-phase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号