首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.

The enthalpy change of formation of the reaction of hydrous dysprosium chloride with ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline (o-phen•H2O) in absolute ethanol at 298.15 K has been determined as (-16.12 ± 0.05) kJ•mol-1 by a microcalormeter. Thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), rate constant and kinetics parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of the reaction have also been calculated. The enthalpy change of the solid-phase reaction at 298.15 K has been obtained as (53.59 ± 0.29) kJ•molt-1 by a thermochemistry cycle. The values of the enthalpy change of formation both in liquid-phase and solid-phase reaction indicated that the complex could only be synthesized in liquid-phase reaction.

  相似文献   

2.
Summary A ternary solid complex Gd(Et2dtc)3(phen) has been obtained from reactions of sodium diethyldithiocarbamate (NaEt2dtc), 1,10-phenanthroline (phen) and hydrated gadolinium chloride in absolute ethanol. The title complex was described by chemical and elemental analyses, TG-DTG and IR spectrum. The enthalpy change of liquid-phase reaction of formation of the complex, ΔrHΘm(l), was determined as (-11.628±0.0204) kJ mol-1 at 298.15 K by a RD-496 III heat conduction microcalorimeter. The enthalpy change of the solid-phase reaction of formation of the complex, ΔrHΘm(s), was calculated as (145.306±0.519) kJ mol-1 on the basis of a designed thermochemical cycle. The thermodynamics of reaction of formation of the complex was investigated by changing the temperature of liquid-phase reaction. Fundamental parameters, the apparent reaction rate constant (k), the apparent activation energy (E), the pre-exponential constant (A), the reaction order (n), the activation enthalpy (ΔrHΘ), the activation entropy (ΔrSΘ), the activation free energy (ΔrGΘ) and the enthalpy (ΔrHΘ), were obtained by combination of the thermodynamic and kinetic equations for the reaction with the data of thermokinetic experiments. The constant-volume combustion energy of the complex, ΔcU, was determined as (-18673.71±8.15) kJ mol-1 by a RBC-II rotating-bomb calorimeter at 298.15 K. Its standard enthalpy of combustion, ΔcHΘm, and standard enthalpy of formation, ΔfHΘm, were calculated to be (-18692.92±8.15) kJ mol-1 and (-51.28±9.17) kJ mol-1, respectively.  相似文献   

3.
The enthalpy change of formation of the reaction of hydrous dysprosium chloride with ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline (o-phen·H2O) in absolute ethanol at 298.15 K has been determined as (-16.12±0.05) kJ·mol-1 by a microcalor-meter. Thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), rate constant and kinetics parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of the reaction have also been calculated. The enthalpy change of the solid-phase reaction at 298.15 K has been obtained as (53.59±0.29) kJ·mol-1 by a thermochemistry cycle. The values of the enthalpy change of formation both in liquid-phase and solid-phase reaction indicated that the complex could only be synthesized in liquid-phase reaction.  相似文献   

4.
Enthalpy of formation of the perovskite-related oxide BaCe0.9In0.1O2.95 has been determined at 298.15 K by solution calorimetry. Solution enthalpies of barium cerate doped with indium and mixture of BaCl2, CeCl3, InCl3 in ratio 1:0.9:0.1 have been measured in 1 M HCl with 0.1 M KI. The standard formation enthalpy of BaCe0.9In0.1O2.95 has been calculated as −1611.7±2.6 kJ mol−1. Room-temperature stability of this compound has been assessed in terms of parent binary oxides. The formation enthalpy of barium cerate doped by indium from the mixture of binary oxides is Δox H 0 (298.15 K)=−36.2±3.4 kJ mol−1.  相似文献   

5.
The heat capacity and the enthalpy increments of strontium metaniobate SrNb2O6 were measured by the relaxation method (2-276 K), micro DSC calorimetry (260-320 K) and drop calorimetry (723-1472 K). Temperature dependence of the molar heat capacity in the form C pm=(200.47±5.51)+(0.02937±0.0760)T-(3.4728±0.3115)·106/T 2 J K−1 mol−1 (298-1500 K) was derived by the least-squares method from the experimental data. Furthermore, the standard molar entropy at 298.15 K S m0 (298.15 K)=173.88±0.39 J K−1 mol−1 was evaluated from the low temperature heat capacity measurements. The standard enthalpy of formation Δf H 0 (298.15 K)=-2826.78 kJ mol−1 was derived from total energies obtained by full potential LAPW electronic structure calculations within density functional theory.  相似文献   

6.
Summary As part of a larger study of the physical properties of potential ceramic hosts for nuclear wastes, we report the molar heat capacity of brannerite (UTi2O6) and its cerium analog (CeTi2O6) from 10 to 400 K using an adiabatic calorimeter. At 298.15 K the standard molar heat capacities are (179.46±0.18) J K-1 mol-1 for UTi2O6 and (172.78±0.17) J K-1 mol-1 for CeTi2O6. Entropies were calculated from smooth fits of the experimental data and were found to be (175.56±0.35) J K-1 mol-1 and (171.63±0.34) J K-1 mol-1 for UTi2O6 and CeTi2O6, respectively. Using these entropies and enthalpy of formation data reported in the literature, Gibb’s free energies of formation from the elements and constituent oxides were calculated. Standard free energies of formation from the elements are (-2814.7±5.6) kJ mol-1 for UTi2O6 and (-2786.3±5.6) kJ mol-1 for CeTi2O6. The free energy of formation from the oxides at T=298.15 K are (-5.31±0.01) kJ mol-1 and (15.88±0.03) kJ mol-1 for UTi2O6 and CeTi2O6, respectively.  相似文献   

7.
Summary The binary systems of C60with α-methyl- and α-chloronaphthalene have been studied by means of differential scanning calorimetry. C60was found to form the molecular complex of the van der Waals type with α-methylnaphthalene which melts incongruently below the boiling point of the solvent at temperature 382.7±3.0 K. The enthalpy of the desolvation reaction is 14.1±0.5 kJ mol-1of C60. The molar ratio of fullerene to solvent in the solvate is 1:1.5. In the system C60-α-chloronaphthalene a two-stage incongruent melting process has been observed at temperatures 314.1±4.6 K and 375.7±7.4 K with the enthalpies 8.1±2.6 kJ mol-1and 11.6±1.0 kJ mol-1, respectively. The composition of the most solvated phase equilibrated with the saturated solution at room temperature and below the first of the incongruent melting transitions was determined as 1:1.5. Based on the results obtained the thermodynamic characteristics of the incongruent melting reactions have been revealed and influence of solvate formation on solubility of C60has been discussed.  相似文献   

8.
A thermochemical study of natural talc was performed by high-temperature melt dissolution calorimetry on a Tian-Calvet calorimeter. Based on the total values of the increment in enthalpy upon heating the sample from room temperature to 973 K, and of the dissolution enthalpy at 973 K measured in this work for talc and gibbsite (along with those determined for tremolite, brucite, and their corresponding oxides), the enthalpy of formation was calculated for talc composed of elements, Mg3[Si4O10](OH)2, at 298.15 K: Δf H elo(298.15 K) = −5900.6 ± 4.7 kJ/mol.  相似文献   

9.
Summary The standard molar enthalpy of formation of methyl methylthiomethyl sulfoxide, CH3(CH3SCH2)SO, at T=298.15 K in the liquid state was determined to be -199.4±1.5 kJ mol-1 by means of oxygen rotating-bomb combustion calorimetry.  相似文献   

10.
Areas of fusion and crystallization peaks of K3TaO2F4 and KTaF6 were measured using the DSC mode of a high-temperature calorimeter (SETARAM 1800 K). On the basis of these quantities, considering the temperature dependence of the calorimeter sensitivity, values of the fusion enthalpy of K3TaO2F4 at the fusion temperature of 1181 K of (43 ± 4) kJ mol−1 and of KTaF6 at the fusion temperature of 760 K of (8 ± 1) kJ mol−1 were determined.  相似文献   

11.
A solid complex Eu(C5H8NS2)3(C12H8N2) has been obtained from reaction of hydrous europium chloride with ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline (o-phen⋅H2O) in absolute ethanol. IR spectrum of the complex indicated that Eu3+ in the complex coordinated with sulfur atoms from the APDC and nitrogen atoms from the o-phen. TG-DTG investigation provided the evidence that the title complex was decomposed into EuS. The enthalpy change of the reaction of formation of the complex in ethanol, Δr H m θ(l), as –22.214±0.081 kJ mol–1, and the molar heat capacity of the complex, c m, as 61.676±0.651 J mol–1 K–1, at 298.15 K were determined by an RD-496 III type microcalorimeter. The enthalpy change of the reaction of formation of the complex in solid, Δr H m θ(s), was calculated as 54.527±0.314 kJ mol–1 through a thermochemistry cycle. Based on the thermodynamics and kinetics on the reaction of formation of the complex in ethanol at different temperatures, fundamental parameters, including the activation enthalpy (ΔH θ), the activation entropy (ΔS θ), the activation free energy (ΔG θ), the apparent reaction rate constant (k), the apparent activation energy (E), the pre-exponential constant (A) and the reaction order (n), were obtained. The constant-volume combustion energy of the complex, Δc U, was determined as –16937.88±9.79 kJ mol–1 by an RBC-II type rotating-bomb calorimeter at 298.15 K. Its standard enthalpy of combustion, Δc H m θ, and standard enthalpy of formation, Δf H m θ, were calculated to be –16953.37±9.79 and –1708.23±10.69 kJ mol–1, respectively.  相似文献   

12.
The molar enthalpies of solution of 2-aminopyridine at various molalities were measured at T=298.15 K in double-distilled water by means of an isoperibol solution-reaction calorimeter. According to Pitzer’s theory, the molar enthalpy of solution of the title compound at infinite dilution was calculated to be DsolHm = 14.34 kJ·mol-1\Delta_{\mathrm{sol}}H_{\mathrm{m}}^{\infty} = 14.34~\mbox{kJ}\cdot\mbox{mol}^{-1}, and Pitzer’s ion interaction parameters bMX(0)L, bMX(1)L\beta_{\mathrm{MX}}^{(0)L}, \beta_{\mathrm{MX}}^{(1)L}, and CMXfLC_{\mathrm{MX}}^{\phi L} were obtained. Values of the relative apparent molar enthalpies ( φ L) and relative partial molar enthalpies of the compound ([`(L)]2)\bar{L}_{2}) were derived from the experimental enthalpies of solution of the compound. The standard molar enthalpy of formation of the cation C5H7N2 +\mathrm{C}_{5}\mathrm{H}_{7}\mathrm{N}_{2}^{ +} in aqueous solution was calculated to be DfHmo(C5H7N2+,aq)=-(2.096±0.801) kJ·mol-1\Delta_{\mathrm{f}}H_{\mathrm{m}}^{\mathrm{o}}(\mathrm{C}_{5}\mathrm{H}_{7}\mathrm{N}_{2}^{+},\mbox{aq})=-(2.096\pm 0.801)~\mbox{kJ}\cdot\mbox{mol}^{-1}.  相似文献   

13.
B3LYP method with the LANL2DZ basis for tin and aug-cc-pVDZ basis for carbon and hydrogen were used to obtain the equilibrium geometry of the main (with a positive charge on the tin) isomers in the C4H11Sn+ system and the transition states at their interconversion. As in the case of silicon and germanium, the cations of lighter elements of the 14th group, the most stable isomer is shown to be the tertiary ion, however, the energy of its complexes with ethane and propane is higher only by several kJ mol−1. Nevertheless, the formation of these complexes from the tertiary ion requires overcoming a rather high barrier (293 and 272 kJ mol−1, respectively). The barrier for isomerization of the secondary ion in the ethane complex is somewhat lower (222 kJ mol−1), but still is significantly greater than the energy gained at the appearance of the nucleogenic ion. The most probable transformation pathways of the nucleogenic stannylium ions are the formation of complexes with ethylene, which requires overcoming barriers of 130 and 117 kJ mol−1 for the tertiary and secondary ions, respectively.  相似文献   

14.
Transport properties of ionic salt CsH5(PO4)2 are studied by the impedance method. The salt’s bulk conductivity ranges from 10?8 to 10?4 S cm?1 in the temperature interval 90 to 145°C. The apparent activation energy is high (1.6–2.0 eV). The conductivity is slightly anisotropic: it is maximum in the [001] direction and minimum in the [100] direction (~5.6 and 1 times × 10?6 S cm?1, respectively, at 130°C). The conductivity of polycrystalline samples is higher by 1–2 orders of magnitude, and the activation energy drops to 1.05 eV due to the formation of a pseudoliquid layer with a high proton mobility at the intercrystallite boundary. The salt’s thermodynamic properties are examined by differential scanning calorimetry and thermogravimetry. No phase transitions are discovered in the salt up to the melting point (151.6°C), with the melting enthalpy equal to ~34 kJ mol?1. The crystallization occurs at lower temperatures (107°C) and the crystallization enthalpy (?18 kJ mol?1) is lower than the melting enthalpy. The melting is accompanied by slow decomposition of the salt. Factors affecting the proton transport in the salt are analyzed.  相似文献   

15.
The standard (p 0=0.1 MPa) molar enthalpy of formation, Δf H 0 m, for crystalline N-phenylphthalimide was derived from its standard molar enthalpy of combustion, in oxygen, at the temperature 298.15 K, measured by static bomb-combustion calorimetry, as –206.0±3.4 kJ mol–1. The standard molar enthalpy of sublimation, Δg cr H 0 m , at T=298.15 K, was derived, from high temperature Calvet microcalorimetry, as 121.3±1.0 kJ mol–1. The derived standard molar enthalpy of formation, in the gaseous state, is analysed in terms of enthalpic increments and interpreted in terms of molecular structure.  相似文献   

16.
The standard enthalpies of formation of liquid and gaseous octachlorotrisilane were estimated, Δf H o (298.15, Si3Cl8, g) = ?1397(9) kJ/mol and Δf H o (298.15, Si3Cl8, l) = ?1447(9) kJ/mol. The decomposition of Si3Cl8 over the temperature range 400–1000 K was studied theoretically.  相似文献   

17.
Areas of fusion and crystallization peaks of K3NbO2F4 were measured using the DCS mode of a high-temperature calorimeter (SETARAM 1800 K). On the basis of these quantities, considering the temperature dependence of the calorimeter sensitivity, the value of the fusion enthalpy of K3NbO2F4 of (98 ± 6) kJ mol−1 was determined at the fusion temperature of 1257 K.  相似文献   

18.
The novel ternary solid complex Gd(C5H8NS2)3(C12H8N2) has been obtained from the reaction of hydrous gadolinium chloride, ammonium pyrrolidinedithiocarbamate (APDC), and 1,10-phenanthroline (o-phen · H2O) in absolute ethanol. The complex was described by an elemental analysis, TG-DTG, and an IR spectrum. The enthalpy change of the complex formation reaction from a solution of the reagents, Δr H m ϑ (sol), and the molar heat capacity of the complex, c m , were determined as being − 15.174 ± 0.053 kJ/mol and 72.377 ± 0.636 J/(mol K) at 298.15 K by using an RD496-III heat conduction microcalorimeter. The enthalpy change of a complex formation from the reaction of the reagents in a solid phase, Δr H m ϑ (s), was calculated as being 52.703 ± 0.304 kJ/mol on the basis of an appropriate thermochemical cycle and other auxiliary thermodynamic data. The thermodynamics of the formation reaction of the complex was investigated by the reaction in solution. Fundamental parameters, the activation enthalpy (ΔH ϑ ), the activation entropy (ΔS ϑ ), the activation free energy (ΔG ϑ ), the apparent reaction rate constant (k), the apparent activation energy (E), the preexponential constant (A), and the reaction order (n), were obtained by the combination of the thermochemical data of the reaction and kinetic equations, with the data of thermokinetic experiments. The constant-volume combustion energy of the complex, Δc U, was determined as being −17588.79 ± 8.62 kJ/mol by an RBC-II type rotatingbomb calorimeter at 298.15 K. Its standard enthalpy of combustion, Δc H m ϑ , and standard enthalpy of formation, Δf H m ϑ , were calculated to be −17604.28 ± 8.62 and −282.43 ± 9.58 kJ/mol, respectively. The text was submitted by the authors in English.  相似文献   

19.
A mass spectrometric study of the saturated vapor over ytterbium tris(hexafluoroacetylacetonate) Yb(hfa)3 (hfa = CF3-C(O)-CH-C(O)-CF3) and of the vapor overheated up to the thermal decomposition temperature of the complex is presented. The vapor composition changes markedly with increasing temperature. At T ≈ 370 K, the mass spectrum of the vapor over Yb(hfa)3 indicates the presence of ions containing one to three metal atoms. As the temperature is raised, the ion currents due to oligomer ions decrease. The oligomers are not detected at T > 440 K. The total decomposition temperature of Yb(hfa)3 is 663(9) K. The second-law enthalpy of sublimation (ΔH so (380 K)) is 134 ± 7 kJ/mol for the monomer and 138 ± 10 kJ/mol for the dimer. The enthalpy of dissociation of the dimer into monomer molecules is nearly equal to the enthalpy of sublimation of the monomer and dimer: ΔH dis(380 K) = 130 ± 15 kJ/mol.  相似文献   

20.
Equilibrium constants for 2-methylpropan-1-ol + 2-methylpropanal + hydrogen have been calculated from measurements of the composition of mixtures formed by passing the vapour over a catalyst at several temperatures in the range 473 to 563 K. Equations relating the changes in enthalpy and entropy of the dehydrogenation reaction to temperature were derived from the equilibrium constants with the aid of heat capacities. By coupling these changes with other thermodynamic data, the standard enthalpy of formation and the standard entropy of 2-methylpropanal at 298.15 K were calculated to be ?(215.7 ± 1.3) kJ mol?1 and (331.2 ± 1.7) J K?1 mol?1 respectively, in the gas state, and ?(247.3 ± 1.8) kJ mol?1 and (238.3 ± 4.4) J K?1 mol?1 respectively, in the liquid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号