首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
阴离子型石蜡乳液的制备与表征   总被引:1,自引:0,他引:1  
刘小英  俞马宏 《化学通报》2015,78(8):753-756
以固体切片石蜡为原料,硬脂酸为单一乳化剂,采用转相乳化(EIP)法制备了阴离子型石蜡乳液。实验结果表明,单一阴离子型乳化剂的乳化效果较好,可以得到平均粒径小(1μm左右)、多分散性低(多分散性指数2左右)的较稳定的石蜡乳液。通过单因素实验考察了乳化剂用量、乳化水用量、乳化时间、乳化温度等对石蜡乳液性能的影响,得出最佳工艺条件∶乳化剂用量7(wt)%、乳化水用量82(wt)%、乳化时间25min、乳化温度80℃。在此条件下,研究了加水方式、p H对石蜡乳液粒径的影响。少量多次的加水方式、p H=9.9制得的乳液平均粒径可达到0.62μm。  相似文献   

2.
魏平  庞浩  廖兵 《广州化学》2003,28(3):7-10
利用相反转技术制备磺化聚苯乙烯(SPS)水基微乳液,研究发现,通过选择溶剂和控制混合溶剂的组成,可制备不同颗粒形态结构的SPS水基微乳液,并研究了相反转过程、乳液稳定性与混合溶剂组成之间的关系。  相似文献   

3.
聚合物互通多孔材料的乳液模板法制备及其功能化研究*   总被引:2,自引:0,他引:2  
本文对近年来利用乳液模板制备聚合物互通多孔材料的研究进行了综述,主要介绍以高内相乳液模板制备互通多孔聚合物整体柱和利用双重乳液 (或称多重乳液) 制备多孔或多空聚合物微球的进展;分析目前多孔聚合物材料研究中存在的问题及其研究动态;讨论合成多孔聚合物材料的性能缺陷及其表面功能化改性的相关研究;并对聚合物互通多孔材料潜在的应用和研究前景进行了展望。  相似文献   

4.
一些聚合物对中相微乳液物性的影响   总被引:1,自引:0,他引:1  
研究了水解聚丙烯酰胺、黄原胶和木质素磺酸盐对中相微乳液相体积、粘度和界面张力的影响。实验结果表明: 含有聚丙烯酰胺时,中相微乳液的相态、增溶参数、中相与下相间界面张力及中相粘度均无明显变化。生物聚合物对中相微乳液的物理性质影响也不大。木质素磺酸盐则对微乳液的形成产生明显影响: 随着木质素磺酸盐浓度的增大,微乳液由中相转变为上相,相应的物理参数亦有变化。  相似文献   

5.
阳离子表面活性剂中相微乳的形成和特性   总被引:10,自引:0,他引:10  
自1943年SdriAn。等人山发现微乳液体系并予以命名以来,对微乳液研究不断深入·微乳液是由油、水、表面活性剂和助表面活性剂组成的各向同性、透明的、热力学稳定的分散体系,微乳液可分为单相微乳液和多相微乳液问.中相微乳液是多相微乳液中,与过剩盐水相和过剩油相达到三相平衡的Winsor皿型微乳液,它在三次采油、日用化工、微环境、酶催化等方面具有特殊重要的应用I‘,‘].近年来对阴离子表面活性剂中相微乳液的形成和特性进行了较多研究[5。8].但对阳离子表面活性剂中相微乳液的研究,目前尚未见报导,本文以澳代十四烷基毗…  相似文献   

6.
混合碳链烷基聚葡糖苷中相微乳液的研究   总被引:6,自引:0,他引:6  
用Winsor型相图、δ—γ“鱼状”相图和改进的ε—β“鱼状”相图研究了混合碳链烷基聚葡糖苷(APG:C8/10G1.31和C12/14G1.43)中相微乳液的相行为,结果表明,随醇浓度的增加,微乳液类型发生Winsor Ⅰ→Ⅲ→Ⅱ的转变,从Winsor型相图直接观察到醇浓度增加时,微乳液三种类型的变化、各相体积以及中相微乳液形成和消失时醇的浓度,从“鱼状”相图除得到中相微乳液形成和消失时的组成,以及单相微乳液形成时的组成外,还可得到平衡界面膜的组成、表面活性剂单体分子和醇在油相中的溶解度及表面活性剂形成单相微乳液的效能等,在比较上述两种相图优缺点的基础上,我们首次提出了改进的“鱼状”相图,把两者的优点集中于该图中,既能直观地观察出体系相态的变化,又能得到平衡界面膜的组成等其它性质,为理论和实际应用提供更多信息和方便。  相似文献   

7.
离子液体参与构筑的微乳液:离子液微乳液   总被引:1,自引:0,他引:1  
微乳液一般是指两种互不相溶的液体(极性相:一般为水;非极性相:一般为有机溶剂),在表面活性剂作用下形成的均一透明的热力学稳定体系,已广泛应用于材料制备、化学合成等领域.离子液体是熔点低于100℃,完全由离子组成的一类物质,作为一种"绿色溶剂",具有诸多优异的物理化学性质,又被称为"可设计型溶剂".本文综述了离子液体作为极性相、非极性相,甚至表面活性剂,构筑的一类微乳液――离子液微乳液,重点介绍了其物理化学性质的研究进展,并展望了发展趋势.  相似文献   

8.
以液体石蜡为油相,间苯二酚和甲醛的水溶液为水相,吐温80和司班80为乳化剂,获得油/水(O/W)型乳状液.将该乳状液聚合、碳化去除模板后制得了碳材料,研究了不同催化剂对所得碳材料形貌的影响.结果表明:选择NaOH为催化剂时,制得的碳材料是一种具有孔壁和孔洞的多孔碳泡沫,典型样品的孔径约为1-2μm;当氨水为催化剂时,所得碳材料是由微球或者相互缠绕的蠕虫状粒子组成的块体材料,这些微球或粒子的直径主要集中在1-2μm,与NaOH为催化剂时所得碳泡沫的孔径尺寸相当.研究发现,氨水的加入使得乳液体系发生了相转化,由原来的O/W型乳液逐渐转变为W/O型高内相乳液.从分子间氢键出发,应用内聚能理论探讨了催化剂导致的乳液相变以及不同形貌碳材料的形成过程.  相似文献   

9.
对以正十六烷、油酸钾、正己醇和水所组成的微乳液进行研究,对其流变性和机理作了探讨.微乳液粘度和水油比变化的关系可用相转化来说明.层形结构区显示出有高粘度特征,并具有明显的负触变性现象.对此进行了讨论,并研究了pH值和盐类的影响.  相似文献   

10.
NaA,MAP和MAX高铝沸石的结构定向及其转晶   总被引:2,自引:0,他引:2  
本文根据不同沸石的结构特点及其在晶化动力学上的差异,由化学组成相近的硅铝凝胶混合物(投料Si/Al比约为1)定向合成出具有不同骨架结构的高铝沸石—NaA,MAP和MAX。考察了沸石晶化过程中晶化导向剂、晶种以及金属阳离子在合成高铝沸石的结构导向作用以及上述三种高铝沸石间的转晶规律。同时本文首次发现了MAP沸石的“室温固相转晶”现象。  相似文献   

11.
The study investigated the effects of temperature on the phase behavior of medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA)-incorporated emulsion system. It is suggested that the three-phase equilibrium consisting of lamellar liquid crystalline (La), bi-continuous microemulsion (D), and oil-swollen micelle phases formed in the vicinity of optimal formulation when the combination of phase inversion composition (PIC) and phase inversion temperature (PIT) methods was applied. The interaction effects between two parameters, viz. temperature and mcl-PHA molecular weight, influenced the lamellar/bi-continuous microemulsion formation within the mcl-PHA-incorporated emulsion. It is suggested that the lamellar/bi-continuous microemulsion phase of mcl-PHA-incorporated emulsion can be thermally induced from multiple emulsion system proximately before EIP, and its hypothetical formation mechanism is elucidated in this study.  相似文献   

12.
This paper deals with the phase behaviour of model abnormal emulsions of cyclohexane/water/polyethoxylated surfactant in the vicinity of the locus of transitional inversion (optimum formulation). Abnormal emulsions are formed under dynamic conditions if the phase containing the soluble surfactant becomes the dispersed phase. Phase maps have been suggested in the literature that define the boundaries of emulsion morphologies. On these maps, only one transformation can be observed for any formulation scan. Furthermore, the morphology of emulsions in the vicinity of the locus of transitional inversion is rather vague. One might assume that by changing the HLB of the surfactant used in an abnormal emulsion to favour the continuous phase, that abnormal emulsion will gradually transform to a normal emulsion of the same type. A new experimental procedure was adopted in which emulsification was started with abnormal emulsions. To transform the abnormal emulsions to the normal emulsion of the same type, they were exposed to variations in temperature, the surfactant HLB, or water–oil phase ratio. As the optimum formulation was approached, the abnormal emulsions became so unstable that could not exist anymore in the un-favoured morphology and inverted to the normal emulsion of the opposite type. Further variation in the formulation along the route led to a transitional inversion to the normal emulsion of the original type. The result indicates an important finding that the transformation of abnormal emulsions to normal ones of the same type occurred via two successive inversions of catastrophic and transitional nature. It appears that the boundaries of catastrophic inversion correspond to the emulsions with the finest drop size. A modification to the phase behaviour maps, to include the locus of catastrophic phase inversion in the vicinity of the transitional inversion, was thus suggested.  相似文献   

13.
Formulation–composition map is an interesting tool to predict the nature of an emulsion, stability, viscosity and nevertheless to decide the mixing protocol of its ingredients. Information based on optimum formulation (environmental conditions at which the affinity of an emulsifier for oil and for aqueous phase is same), which is depicted through hydrophilic–lipophilic deviation (HLD) concept, is necessary to make a formulation–composition map of an emulsion. In order to apply this concept in food emulsions, it is necessary to determine characteristic constants of each component of the system, i.e. the aqueous phase, the oil phase and the emulsifier at equilibrium. In this work formulation–composition map of a sunflower oil–water–lecithin system, based on the knowledge of phase behavior of lecithin at equilibrium and emulsification, was made. The shape of inversion line on formulation–composition map was not the classical stair type rather an almost vertical inversion line at water-fraction (fw) near 0.20 was observed. It was supposed to be linked to the viscosity of oil phase which was 50 times the viscosity of aqueous phase. Additionally, emulsions were of oil-in-water (O/W) type for fw higher than 0.20, but their viscosity and the drop size behavior with respect to salt concentration as formulation variable did not show the existence of transitional inversion line on formulation–composition map. Such map in advance can certainly facilitate the guidelines for dynamic emulsification.  相似文献   

14.
We investigated the phase inversion of Pickering emulsions stabilized by plate-shaped clay particles. Addition of water induced a phase inversion from a water-in-oil (W/O) emulsion to an oil-in-water (O/W) emulsion when the amount of the oil phase exceeded a limiting amount of oil absorption to solid particles. On the other hand, a phase inversion from a powdery state to an O/W emulsion state through an oil-separated state is observed when the amount of an oil phase is less than the limiting amount of the oil absorption. Interestingly, the oil separated is re-dispersed as emulsion droplets into the O/W emulsion phase. This type of phase inversion, which is a feature of the Pickering emulsions stabilized by the clay particles, is caused by a change in the aggregate structures of particles.  相似文献   

15.
研究了乳化剂的HLB值、乳化剂浓度、乳化温度、搅拌强度对环氧树脂E-44相反转乳化中临界含水量Rf值与乳状液稳定性的影响,探讨了环氧树脂E-44相反转机理。实验结果表明环氧树脂E-44从W/O向O/W相反转的发生与乳化剂的HLB值与浓度、乳化温度、搅拌强度等因素都有关,其Rf值随着乳化条件的不同是动态变化的。  相似文献   

16.
Very fine emulsions with droplet size in the sub-micron range, often called miniemulsions, are prepared by the moderate (magnetic) stirring of a system undergoing a dynamic transitional inversion driven by a continuous change in physicochemical formulation (here temperature). Near optimum formulation for three-phase systems, the ultralow interfacial tension favors the drop breaking rate, and fine emulsions can be made. However, this region is also known for its rapid coalescence rate. Thus, a high enough stability can be attained only by shifting the formulation away from optimum as soon as the emulsion is made. Moreover, a rapid change in formulation through the three-phase region also results in a separation phenomenon that can be harnessed to produce ultra fine droplets.

The phase behavior of surfactant-oil-water systems and emulsion properties (type, droplet size and stability) are studied as a function of surfactant concentration (2 wt.% and 6 wt.%), for two different nonionic surfactants (polyoxyethylene tri-terbutyl ethers and sorbitan derivatives) with HLB ranging from 4 to 16. Kerosene and paraffin oil are used as oil phases. The transitional inversion form W/O to O/W is induced by a rapid cooling of the stirred systems from above to below the optimum temperature for three-phase behavior.

Miniemulsions are attained when the surfactant concentration is high enough, and when the temperature quenching span covers an appropriate range related to phase behavior.  相似文献   

17.
Intensive agglomeration and microencapsulation of powders   总被引:1,自引:0,他引:1  
Highly concentrated colloidal latex particles from thermoplastics (low-density polyethylene) can be obtained by using phase-inversion emulsification of a polymer melt in which hydrophobically modified water-soluble polymers are used to provide surface activity. Initially, a water-in-polymer-melt emulsion is obtained and subsequently inverted to a polymer-melt-in-water emulsion when a critical aqueous phase volume is reached. After the phase inversion and subsequent dilution of the emulsion, if the solidification of the melt is carried out during mixing, another phase inversion takes place and water-in-solid-polymer aggregates are formed even if the phase volume of the aqueous phase is well above the critical value. These aggregates contain an aqueous phase encapsulated by the polymer. The kinetics of this phase inversion is studied and the use of the technique to obtain microcapsules from aqueous solutions is investigated. Received: 15 December 2000 Accepted: 24 April 2001  相似文献   

18.
A gel emulsion with high internal oil phase volume fraction was formed via an inversion process induced by a water–oil ratio change. The process involved the formation of intermediate multiple emulsions prior to inversion. The multiple emulsions contain a liquid crystal formed by the surfactant with water; this was both predicted by the equilibrium phase diagram as well as observed using polarization microscopy. These multiple emulsions were more stable compared to alternative multiple emulsions prepared in the same way with a surfactant that does not form liquid crystals. While the formation of a stable intermediate multiple emulsion may not be a necessary condition for the inversion to occur, the transitional presence of a liquid crystal proved to be a significant factor in the stabilization of the intermediate multiple emulsions. The resulting gel emulsion contained a small fraction of the liquid crystal according to the phase diagram, and it exhibited excellent stability.  相似文献   

19.
For two-phase polymer blend systems, the phase inversion will take place as the blendcomposition is changed. In this paper a mechanical model has been proposed to describe themodulus-composition relation in the phase inversion region. The application of the mechanicalmodel to two polyurethane blend systems has been studied. It was found that the theoreticalprediction for the modulus-composition relation is quite consistent with the experimentalresults. Furthermore, the characteristics of the phase inversion can be determined uniquelyby the parameters involved in the mechanical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号