首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
石墨相氮化碳(g-C_3N_4)纳米片因其廉价、易得、无毒等优点而在光催化领域被广泛应用和研究.但单一的g-C_3N_4存在光生电子与空穴易复合等缺陷,而助催化剂的存在可以促进电荷转移,延长载流子寿命,从而提高光催化性能.本文通过合成PtPd双金属合金纳米颗粒作为助催化剂,对g-C_3N_4纳米片光催化剂进行修饰以提高可见光照射下的光催化产氢速率.g-C_3N_4是以尿素为原材料,通过高温热缩聚和热刻蚀的方法合成, PtPd/g-C_3N_4复合光催化剂通过化学还原沉积法合成.对所获得的复合光催化剂进行了XRD测试并将结果与PdPt标准卡片进行了对比,结果表明,各峰的位置都能有较好的对应,说明成功合成了PdPt.采用TEM对PtPd/g-C_3N_4的形貌进行观察,发现g-C_3N_4呈薄片状,且PdPt颗粒较为均匀地分布在其表面.XPS测试发现, PtPd/g-C_3N_4复合样品中Pt和Pd元素的峰值较Pt/g-C_3N_4和Pd/g-C_3N_4均发生0.83eV的偏移,进一步说明合成了PtPd双金属合金纳米颗粒.DRS测试表明, g-C_3N_4的带隙宽度为2.69eV,而PtPd双金属合金纳米颗粒的负载有效地减小了禁带宽度,从而提高了光催化剂对光的利用率.光催化产氢性能实验发现,当g-C_3N_4负载PtPd双金属合金纳米颗粒后,光催化产氢速率大幅度提高,其中负载量为0.2wt%的PtPd/g-C_3N_4复合光催化剂的产氢速率最高,为1600.8μmol g~(–1)h~(–1),是纯g-C_3N_4纳米片的800倍.向光催化体系中添加10gK_2HPO_4后,产氢速率提高到2885.0μmolg~(–1)h~(–1).当二元合金中Pt:Pd比为1:1时, PtPd/g-C_3N_4复合光催化剂上的产氢速率最高,分别是Pt/g-C_3N_4和Pd/g-C_3N_4上的3.6倍和1.5倍.另外,在420nm处量子效率为5.5%.PtPd/g-C_3N_4复合光催化剂还表现出很好的稳定性,能够在完成4次光催化实验循环后仍然保持其良好的光催化活性.对PtPd/g-C_3N_4复合光催化剂进行了一系列光电化学表征.PL结果表明, PtPd/g-C_3N_4复合光催化剂与纯g-C_3N_4相比荧光强度减弱,说明PtPd/g-C_3N_4复合光催化剂有较慢的光生电子-空穴复合速率,这可以更有效地使电荷分离,从而提高光催化活性.根据光催化反应和表征分析结果提出了复合光催化剂上水分解产氢可能的机理,即PtPd/g-C_3N_4之间的协同作用有助于提高复合光催化剂的光催化活性.  相似文献   

2.
光催化技术是目前解决能源和环境问题最具前景的手段之一,因此寻找高效光催化剂已成为光催化技术的研究热点.而在众多半导体催化剂中,廉价、环保且性能稳定的g-C_3N_4光催化剂在太阳光开发利用方面尤其引人关注.然而,由于g-C_3N_4的比表面小,活性位点少,以及光生电子/空穴对易复合等不足,严重导致其较低的光催化量子效率.因此,构造Z型体系和负载助催化剂等策略被广泛应用于提高g-C_3N_4光催化效率.在过去几年中,TiO_2,Bi_2WO_6,WO_3,Bi_2MoO_6,Ag_3PO_4和ZnO已经被成功证实可以与g-C_3N_4耦合而构造Z型光催化剂体系.其中,WO_3/g-C_3N_4光催化剂体系,具有可见光活性的WO_3导带中的光生电子和g-C_3N_4价带中的光生空穴容易实现Z型复合,从而保留了WO_3的强氧化能力和g-C_3N_4的高还原能力,最终大幅度提高了整个体系的光催化活性.在g-C_3N_4的各种产氢助催化剂中,由于常用的Pt,Ag和Au等贵金属的高成本和低储量等问题严重限制了它们的实际应用,所以近年来各种非贵金属助催化剂(包括纳米碳,Ni,NiS,Ni(OH)_2,WS_2和MoS_2等)得到了广泛的关注.我们采取廉价且丰富的Ni(OH)_x助催化剂修饰g-C_3N_4/WO_3耦合形成的Z型体系,开发出廉价高效的WO_3/g-C_3N_4/Ni(OH)_x三元产氢光催化体系.在该三元体系中,Ni(OH)_x和W0_3分别用于促进g-C_3N_4导带上光生电子和价带的光生空穴的分离及利用,从而使得高能的g-C_3N_4的光生电子在Ni(OH)_x富集并应用于光催化产氢,而高能的WO_3的光生空穴被应用于氧化牺牲剂三乙醇胺,最终实现了整个体系的高效光催化产氢活性及稳定性.我们通过直接焙烧钨酸铵和硫脲制备出WO_3纳米棒/g-C_3N_4,并采用原位光沉积方法将Ni(OH)_x纳米颗粒负载到WO_3/g-C_3N_4上.随后,我们采取X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱分析(XPS)和比表面和孔径分布等表征手段来研究光催化剂的结构与形貌;采取紫外-可见漫反射表征方法来研究其光学性能;采取荧光光谱,阻抗和瞬态光电流曲线等表征手段来测试光催化剂的电荷分离性能;采取极化曲线和电子自旋共振谱等表征手段来证明光催化机理;采取光催化分解水产氢的性能测试来研究光催化剂的光催化活性与稳定性.XRD,HRTEM和XPS表征结果,表明WO_3为有缺陷的正交晶系的晶体,直径为20-40纳米棒且均匀嵌入在g-C_3N_4纳米片上;Ni(OH)_x为Ni(OH)_2与Ni的混合物,其Ni(OH)_2与Ni的摩尔比为97.4:2.6,Ni(OH)_x粒径为20-50 nm且均匀分散在g-C_3N_4纳米片上,WO_3/g-C_3N_4/Ni(OH)_x催化剂界面之间结合牢固,其中WO_3和Ni(OH)_x均匀分布在g-C_3N_4上.紫外-可见漫反射表征结果表明,随着缺陷WO_3的负载量增加,复合体系的吸收边与g-C_3N_4相比产生明显的红移,而加入Ni(OH)_x助催化剂使得催化剂体系的颜色由黄变黑,明显地增加了可见光的吸收.荧光光谱,阻抗和瞬态光电流曲线结果表明,WO_3和Ni(OH)_x的加入能有效地促进光生电子/空穴的分离.极化曲线结果表明,掺入WO_3和Ni(OH)_x能降低g-C_3N_4的析氢过电位,从而提高光催化剂表面的产氢动力学.·O_2~-和·OH电子自旋共振谱表明成功形成了WO_3/g-C_3N_4耦合Z型体系.光催化分解水产氢的性能测试表明,20%WO_3/g-C_3N_4/4.8%Ni(OH)_x产氢效率最高(576μmol/(g·h)),分别是g-C_3N_4/4.8%Ni(OH)_x,20%WO_3/g-C_3N_4和纯g-C_3N_4的5.7,10.8和230倍.上述结果充分证明,Ni(OH)_x助催化剂修饰和g-C_3N_4/WO_3 Z型异质结产生了极好的协同效应,最终实现了三元体系的极高的光催化产氢活性.  相似文献   

3.
氢能是最具应用前景的清洁能源之一,利用太阳能作为驱动力光催化水分解制取氢气已被广泛研究.作为非金属半导体光催化剂, g-C_3N_4具有合适的能带结构(2.71 eV),良好的可见光捕获能力和物理化学稳定性,因而有一定的光催化产氢能力;但是它具有可见光吸收能力(470 nm)不够、光生电子空穴容易复合等缺点,使其光催化制氢能力受到了极大限制.通过助剂修饰可有效促进载流子分离,增加反应活性位点及加速产氢动力学.因此,本文采用双助剂改性以提高g-C_3N_4的光催化制氢性能.本文首先采用原位煅烧法将银纳米粒子(AgNPs)沉积在g-C_3N_4表面(Ag/g-C_3N_4),随后利用水热法成功地将硫化镍(NiS)负载在Ag/g-C_3N_4复合材料表面.XRD, FT-IR, XPS和TEM结果表明,通过原位煅烧和水热合成法可以成功地将Ag和NiS均匀、稳定沉积在g-C_3N_4表面,并且g-C_3N_4保持原有结构不变.紫外可见吸收光谱(UV-Vis)、瞬态光电流、阻抗(EIS)和光致发光谱(PL)分析表明, AgNPs和NiS的引入不仅改善了体系的光吸收范围和强度,而且显著提高了体系光生电子和空穴的产生、分离性能,有助于提高光子利用效率.其中三元样品的最高光电流可以达到2.94′10–7 A·cm~(–2),是纯g-C_3N_4的3.1倍.对系列光催化剂的分解水制氢性能测试发现(采用300 W氙灯作为光源,三乙醇胺作为牺牲剂), 10wt%-NiS/1.0wt%-Ag/CN样品具有最优异的光催化分解水制氢性能,产氢速率可达9.728 mmol·g–1·h–1,是纯g-C_3N_4的10.82倍,二元10wt%-NiS/CN的3.45倍, 1.0wt%-Ag/CN的2.77倍.三元样品反应前后的XRD特征峰位置没有发生变化,循环四次后样品仍具有83%的催化活性,证明其具有良好的制氢稳定性.10 wt%-NiS/1.0 wt%-Ag/CN样品在可见光下(λ 420 nm)的制氢量子效率为1.21%.三元体系光催化产氢性能增强的原因在于:(1)Ag纳米颗粒的局域表面等离子体效应使得三元体系的光捕获能力得到提高;(2)Ag NPs和NiS负载在g-C_3N_4上共同促进了光生电子空穴的产生和分离;(3)Ag NPs和Ni S作为优良的析氢助催化剂沉积在g-C_3N_4表面上可以有效地提高产氢动力学.本文构建的NiS/Ag/g-C_3N_4复合体系为g-C_3N_4基复合光催化剂的设计及制备提供了新的思路.  相似文献   

4.
近年来,石墨型氮化碳(g-C_3N_4)作为一种n型半导体光催化剂材料,由于具有较好的热稳定性和化学稳定性,同时具有可调的带隙结构和优异的表面性质而备受人们关注.然而,传统的g-C_3N_4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷,制约着其光催化活性的进一步提高.因此,人们开发了多种技术对块体状g-C_3N_4材料进行改性,其中构建基于g-C_3N_4纳米薄片的异质结复合光催化材料被认为是强化g-C_3N_4载流子分离效率,进而提高其可见光催化活性的重要手段.BiOI作为一种窄带隙的p型半导体光催化剂,具有强的可见光吸收能力和较高的光催化活性,同时它与g-C_3N_4纳米薄片具有能级匹配的带隙结构.因此,基于以上两种半导体材料的特性,构建新型的BiOI/g-C_3N_4纳米片复合光催化剂材料不仅能够有效提高g-C_3N_4的可见光利用率,而且还可以在n型g-C_3N_4和p型BiOI界面间形成内建电场,极大促进光生电子-空穴对的分离与迁移效率.为此,本文通过简单的一步溶剂热法在g-C_3N_4纳米薄片表面原位生长BiOI纳米片材料,成功制备了新型的BiOI/g-C_3N_4纳米片复合光催化剂.利用X射线衍射仪(XRD),场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试.XRD,SEM和TEM结果显示,结晶完好的BiOI呈小片状均匀分散在g-C_3N_4纳米薄片表面;紫外漫反射光谱表明,纳米片复合材料的吸光性能较g-C_3N_4薄片有显著提升;瞬态光电流测试证明,复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中,BiOI/g-C_3N_4纳米片复合光催化剂显示出了优异的催化活性和稳定性,其光降解活性分别为纯BiOI和g-C_3N_4的34.89和1.72倍;自由基捕获实验发现,反应过程中的主要活性物种为超氧自由基(·O_2~-),即光生电子主导整个降解反应的发生.由此可见,强的可见光吸收能力和g-C_3N_4与BiOI界面处形成的内建电场协同促进了g-C_3N_4纳米薄片的电荷分离,进而显著提高了该复合材料的可见光催化降解活性.此外,本文初步验证了在BiOI/g-C_3N_4纳米片复合光催化体系内光生电荷是依据"双向转移"机制进行分离和迁移的,而非"Z型转移"机制.  相似文献   

5.
近年来,利用太阳光光解水制氢被认为是解决当前能源短缺和环境污染问题的重要途径之一.众所周知,助催化剂可以有效的降低光催化产氢反应的活化能,提供产氢反应的活性位点,有效的促进催化剂中光生载流子的传输与分离,从而提高光催化剂产氢体系的反应活性和稳定性.然而,鉴于贵金属助催化剂(Pt, Au和Pd等)储量低、成本高,极大地制约了其应用.因而,开发出适用于光催化水分解制氢的非贵金属助催化剂尤为重要.石墨相氮化碳(g-C_3N_4)因其具有热稳定性、化学稳定性高以及制备成本低廉等优点,成为光催化领域研究的热点.然而,由于g-C_3N_4的禁带宽度(Eg=2.7 eV)较宽,致使其对可见光的响应能力较弱,并且在光催化反应过程中其光生电子-空穴对易复合,从而导致其光催化产氢活性较低.因此,如何开发出含非贵金属助催化剂的g-C_3N_4高效、稳定的太阳光催化分解水制氢体系引起了人们极大的关注.本文通过水热法-高温氨化法首次将非贵金属Ni_3N作为助催化剂来修饰g-C_3N_4,增强其可见光光催化性能(l420 nm).采用XRD、SEM、EDS、Mapping、UV-Vis、XPS和TEM等手段对Ni_3N/g-C_3N_4光催化体系进行了表征.结果表明, Ni_3N纳米颗粒成功的负载到g-C_3N_4表面且没有改变g-C_3N_4的层状结构.此外,采用荧光光谱分析(PL)、阻抗测试(EIS)和光电流谱进行表征,结果显示, Ni_3N纳米颗粒可有效促进催化剂中光生载流子的传输与分离,抑制电子-空穴对的复合.同时,将功率为300 W且装有紫外滤光片(λ420 nm)的氙灯作为可见光光源进行光催化产氢实验结果表明,引入了一定量的Ni_3N可以极大提高g-C_3N_4的光催化活性,其中, Ni_3N/g-C_3N_4#3的产氢量为~305.4μmol·h-1·g-1,大约是单体g-C_3N_4的3倍.此外,在450nm单色光照射下, Ni_3N/g-C_3N_4光催化产氢体系的量子效率能达到~0.45%,表明Ni_3N/g-C_3N_4具有将入射电子转化为氢气的能力.循环产氢实验表明, Ni_3N/g-C_3N_4在光催化产氢过程中有着较好的产氢活性和稳定性.最后,阐述了Ni_3N/g-C_3N_4体系的光催化产氢反应机理.本文采用的原料价格低廉,性能优异,制备简单,所制材料在光催化制氢领域展现出重要前景.  相似文献   

6.
采用一步煅烧法使类石墨烯碳氮化合物(g-C_3N_4)和磷化镍(Ni_2P)复合并对其光催化产氢性能进行研究.利用X射线粉末衍射、透射电镜、X射线光电子能谱、紫外可见光谱对该复合催化剂的组成、形貌等进行了表征.研究了不同含量的Ni_2P以及不同牺牲剂对g-C_3N_4/Ni_2P光催化性能的影响.与单独的g-C_3N_4相比,该复合催化剂的光催化产氢速率提高了13倍,可以达到165μmol g~(-1)·h~(-1).利用光电化学和光致发光光谱等技术对该复合光催化剂的光催化产氢机理进行研究,结果表明Ni_2P在高效分离光生载流子方面起了关键作用,并且g-C_3N_4和Ni_2P的复合产生了协同效应加速了电子-空穴对的分离,提高了光催化产氢性能.  相似文献   

7.
太阳能光催化技术广泛应用于处理环境污水中.Z型光催化剂体系具有较强的氧化还原能力,降低半导体的带隙,且使导带更负,价带更正,有效拓宽光生电子-空穴空间距离,抑制其复合,大大提高了光催化剂的催化性能,因此,构筑直接的Z型光催化体系已成为光催化领域的研究热点之一.TiO_2具有较好的光催化性能和良好的化学稳定性,但其禁带较宽,只能被太阳光中约占4%的紫外光激发,对太阳光中约占50%的可见光不响应,且光生电子-空穴易复合.g-C_3N_4是非金属光催化剂,具有较好的光催化活性,可见光吸收非常强,但比表面积较小,光生电子-空穴易复合.还原氧化石墨烯(RGO)具有大的比表面积和优异的传输载流子能力,可显著提高光催化剂的比表面积,同时降低电子空穴复合效率,从而在一定程度上改善光催化剂性能.大量研究证实, TiO_2/g-C_3N_4/RGO三元异质结的光催化性能明显优于单组份TiO_2, g-C_3N_4和二元TiO_2/g-C_3N_4光催化剂,但现有制备工艺复杂且耗时,因此,简易地构筑具有高光催化性能的Z型TiO_2/g-C_3N_4/RGO三元异质结仍具有挑战性.本文采用简易的直接电纺法构筑了高光催化活性的Z型TiO_2/g-C_3N_4/RGO三元异质结光催化剂,通过调节尿素的用量成功制备了一系列不同形貌的TiO_2/g-C_3N_4/RGO三元异质结.并采用X-射线衍射、红外光谱、拉曼光谱、X射线光电子能谱、扫描电子显微镜、透射电子显微镜、紫外-可见漫反射吸收光谱、氮气吸附-脱附测试、光电化学测试和荧光光谱等技术对所制备样品的晶型、组成、形貌、光捕获能力、载流子分离能力、比表面积、光电流、阻抗、光降解性能以及羟基自由基的生成进行系统性测试.以罗丹明B为目标探针分子,考察了模拟太阳光下所制备的光催化剂的光催化活性,结果表明,尿素添加量为0.6g时,电纺构筑的TiO_2/g-C_3N_4/RGO三元异质结在60min具有99.1%的光催化降解效率,显著优于纯TiO_2, g-C_3N_4,二元TiO_2/g-C_3N_4以及制备的其它TiO_2/g-C_3N_4/RGO三元异质结光催化剂.基于光电化学测试、活性物种淬灭实验和荧光光谱分析测试羟基自由基等分析结果,提出了一个合理的Z型增强光催化活性机理.  相似文献   

8.
本文通过将Cu~(2+)掺入g-C_3N_4结构中成功制备了Cu/g-C_3N_4光催化剂,并进一步优化其光催化性能。同时,采用多种表征方法对Cu/g-C_3N_4光催化剂的结构、形貌、光学和光电性能进行了分析。X射线衍射(XRD)和X射线光电子能谱(XPS)结果表明制备的光催化剂为Cu/g-C_3N_4,且Cu的价态为+2。在可见光照射下,研究了不同铜含量的Cu/g-C_3N_4和gC_3N_4光催化剂的光催化活性。实验结果表明,Cu/g-C_3N_4光催化剂的降解能力显著高于纯相的g-C_3N_4。N_2吸附-解吸等温线表明,Cu~(2+)的引入对g-C_3N_4的微观结构影响不大,说明光催化活性的提高可能与光生载流子的有效分离有关。因此,Cu/g-C_3N_4光催化降解RhB和CIP性能的提升可能是由于Cu~(2+)可以作为电子捕获陷阱从而降低了载流子的复合速率。通过光电测试表明,在g-C_3N_4中掺入Cu~(2+)可以降低g-C_3N_4的电子空穴复合速率,加速电子空穴对的分离,从而提高了其光催化活性。自由基捕获实验和电子自旋共振(ESR)结果表明,超氧自由基(O_2~(·-))、羟基自由基(·OH)和空穴的协同作用提高了Cu/g-C_3N_4光催化剂的光催化活性。  相似文献   

9.
近年来,随着全球科学技术的进步和工业的不断发展,人们的经济生活水平有了极大的提高,但同时也造成能源短缺和环境污染问题,成为21世纪制约经济和社会进一步发展的严重瓶颈,因此开发和研究环保和可再生的绿色能源技术是一项紧迫任务.自首次报道用二氧化钛为电极、采用光电化学分解水制氢之后,光催化分解水制氢引起了人们极大的兴趣,并被认为是缓解全球能源问题的最有希望的解决方案之一.其中,实现有效的太阳能制氢生产中最关键因素是设计稳定、高效和经济的光催化剂,并且能够利用可见光区进行工作(入射到地球上46%的太阳光谱是可见光).聚合物石墨相氮化物(g-C_3N_4)作为一种对可见光响应的新型无机非金属半导体光催化剂,被认为是一种"可持续"有机半导体材料,目前已并被广泛应用于各种光催化反应中.但是由于其光生电子-空穴在动力学上具有相对较大的复合速率,单纯g-C_3N_4的光催化活性远远达不到人们的要求.因此,应该尽可能的提高电荷转移动力学来抑制g-C_3N_4中光生电荷的复合,从而提高光生电荷从g-C_3N_4转移至反应位点的迁移速率.在前期研究的基础上,本文利用钒氧酞菁(VOPc)分子通过p-p相互作用以修饰g-C_3N_4的表面和电子结构,从而提高其光生电子-空穴的分离效率,最终极大提升其可见光光催化制氢性能.本文采用紫外可见光谱(UV-vis),高分辨透射电镜(HRTEM),傅里叶变换红外光谱(FT-IR), X-射线能谱(XPS),稳态光致发光光谱(PL),时间分辨光致发光光谱(TRPL),光电流和阻抗等一系列表征手段研究了VOPc/g-C_3N_4(VOPc/CN)复合催化剂的结构和性质.FT-IR, XPS及mapping等结果表明, VOPc分子已经成功引入到g-C_3N_4表面且未对其晶相、电子结构及其纳米片结构产生显著影响;UV-vis结果显示, VOPc分子成功引入并通过非共价键的p-p作用连接.总之,引入VOPc分子即拓展了催化剂对可见光的响应区域,又有利于光生载流子的传递和光生电子-空穴对的有效分离.当引入4wt%的VOPc分子时, VOPc/CN复合光催化剂的产氢速率增加至65.52μmolh-1, 420 nm处的量子效率高达6.29%,是单纯g-C_3N_4的6倍.此外,该催化剂在可见光下连续照射反应20 h后,其光催化活性几乎没有降低,表现出良好的光化学稳定性.由于两者LUMO和HOMO轨道之间的良好匹配,在光催化过程中光生电子-空穴在VOPc和g-C_3N_4之间实现了空间分离,有效阻止了光生电子-空穴对的复合,因而g-C_3N_4光催化制氢性能显著提升.同时对比了利用NiS和Ni Px做助剂的g-C_3N_4的可见光光催化制氢性能.结果显示, VOPc/CN复合光催化剂具有较好的光催化性能.总之,本文通过一种简单、经济、有效的方法将两种新兴的功能材料有机地复合在一起,用于可见光照射下高效光催化制氢,为以后合理地开发用于太阳能转换的更为高效经济的材料提供了一个新的思路.  相似文献   

10.
利用原位沉积法将Bi OBr纳米片生长到g-C_3N_4表面,制得g-C_3N_4-Bi OBr p-n型异质结复合光催化剂。采用X射线衍射(XRD)、红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、紫外可见漫反射(UV-Vis-DRS)和荧光光谱(PL)等测试对光催化剂结构和性能进行表征。通过可见光辐照降解甲基橙水溶液检测评估复合光催化剂光催化活性。研究结果表明:复合光催化剂由Bi OBr和g-C_3N_4两相组成,Bi OBr纳米片在片状g-C_3N_4表面快速形核生长形成面-面复合结构。相比于纯相g-C_3N_4和Bi OBr,g-C_3N_4-Bi OBr复合材料具有更强可见光吸收能力,吸收带边红移。在可见光辐照100 min后,性能最佳的2:8 gC_3N_4-Bi OBr复合光催化剂光催化活性分别是纯相g-C_3N_4和Bi OBr的1.8和1.2倍,经过4次循环实验后,其降解率仍达84%,说明复合结构光催化剂催化性能和稳定性增强。复合光催化剂的荧光强度显著降低,说明光生载流子复合得到了有效抑制。复合光催化剂催化性能的提高归因于p-n型异质结促进电荷有效分离、抑制电子-空穴复合和吸收光波长范围的扩展,相比单一成分材料具有更好的催化活性和稳定性。自由基捕获实验证明,可见光降解甲基橙光催化过程中的主要活性成分为空穴,并据此提出了可能的光催化机理。  相似文献   

11.
近年来,光催化技术作为一种"绿色"技术,在解决环境问题和能源危机等方面有着广泛的应用.新型可见光响应的半导体光催化材料g-C_3N_4具有二维(2D)纳米片结构,合适的禁带宽度(Eg=2.7 eV),优异的化学稳定性和低廉成本得到广泛的研究.但是,g-C_3N_4光催化剂本身的光生电子-空穴对复合几率高以及可见光响应范围窄等缺点,使其在光催化领域应用中具有一定的局限性.因此,提高g-C_3N_4半导体材料的光催化活性成为近年的研究热点.众所周知,Z型光催化体系的构筑不仅使材料具有较强的氧化还原能力而且有利于其光生电子-空穴的有效分离.但传统Z型光催化体系由于贵金属的引入、复杂的反应体系限制了其在实际领域中的应用.因此,构筑无电子介体的直接Z型光催化体系成为光催化领域的研究热点之一.与块状材料相比,零维(0D)量子点材料具有带隙可调性,可见光和近红外区域的强光收集能力等性能,在光催化领域具有广阔的应用前景.MoS_2量子点具有优异的光学和电子性能,因此,在催化、荧光检测、生物成像领域有重要的应用价值.我们结合水热和微乳溶液法合成了直接Z型g-C_3N_4/MoS_2 QDs(2D/0D)复合光催化材料,并采用X射线衍射(XRD)、X射线光电子能谱(XPS)、原子力显微镜(AFM),透射电子显微镜(TEM)以及紫外可见漫反射光谱(UV-vis)等表征方法对该催化剂的结构特征、微观形貌和光学性能进行分析.并研究了g-C_3N_4/MoS_2 QDs复合材料在可见光下的光催化性能.XRD,XPS结果表明,复合材料由g-C_3N_4,MoS_2组成.TEM和高斯分布结果表明,MoS_2 QDs具有良好的分散性,其尺寸小于5 nm,g-C_3N_4纳米片由具有皱纹和不规则折叠结构的薄层组成,在g-C_3N_4/MoS_2 QDs复合材料中可以看到少量的MoS_2量子点沉积在片状g-C_3N_4的表面上.光催化性能测试结果进一步表明,7%MoS_2 QDs/g-C_3N_4在可见光下具有优异的光催化性能:可见光照射12 min内,RhB的降解效率可达100%,降解速率常数是纯g-C_3N_4的8.8倍.为了进一步研究g-C_3N_4/MoS_2异质结光催化剂的光催化机理,用对苯醌、乙二胺四乙酸二钠和丁醇进行了自由基捕捉剂实验.结果表明,超氧自由基在降解有机染料过程中起主要作用,羟基自由基和空穴在增强的光催化性能中发挥相对较小的作用.通过光电流测试、材料价带导带位置计算以及·O_2~-和·OH定量实验结果并结合文献分析认为,MoS_2量子点和g-C_3N_4之间优良的界面接触以及由直接Z型结构产生的光生电荷载体的有效分离使其光催化性能得到显著提升.  相似文献   

12.
陈峰  杨慧  罗玮  王苹  余火根 《催化学报》2017,(12):1990-1998
作为一种无金属的新型半导体材料,g-C_3N_4因具有稳定的物理化学性质及合适的能带结构而引起人们的关注.理论上g-C_3N_4完全满足水分解的电势条件.然而研究发现,g-C_3N_4材料本身的光催化性能并不好,这主要是由于半导体材料被光激发后生成的自由电子和空穴还没来得及到达材料表面参与反应,就在材料体相内发生复合,导致电子参与有效光催化制氢反应的几率大大降低.同时还发现,将少量的贵金属,如Pt,Au,Pd作助催化剂修饰在该半导体表面,其光催化性能明显提高.但由于这些贵金属储量非常稀少,价格昂贵,导致它们的使用受到一定限制.而Ag作为一种价格远低于Pt,Au,Pd的贵金属,也得到了广泛的研究.研究表明,金属Ag储存电子的能力很好,因此可以有效地将半导体上生成的光生电子快速转移到Ag上面去,从而达到电子空穴快速分离的目的.但是在光催化制氢过程中,Ag吸附H~+的能力较弱,致使电子与H~+反应的诱导力较弱,使得Ag释放电子的能力较差.因此可以通过提高Ag表面对H~+的吸附强度,以加速Ag的电子释放,通过表面修饰来提高Ag助剂的光催化活性.研究发现,Ag纳米粒子表面与含硫化合物之间存在很强的亲和力.硫氰根离子(SCN~–)具有很强的电负性,容易吸附溶液中H~+离子,并且也易吸附在Ag纳米粒子的表面.因此可以利用Ag与SCN~–的作用来增强Ag释放电子的能力.本文采用光还原法将Ag沉积在g-C_3N_4半导体材料表面,然后通过在制氢牺牲剂中加入KSCN溶液,利用SCN~-与Ag的亲和力来提高光生电子参与光催化反应的效率.结果表明,在SCN~-存在的情况下,g-C_3N_4/Ag的光催化制氢性能显著提高.当制氢溶液中SCN~–浓度为0.3 mmol L~(–1)时,材料的光催化制氢性能达最大,为3.89μmol h~(–1),比g-C_3N_4/Ag性能提高5.5倍.基于少量的SCN~–就能明显提高g-C_3N_4/Ag材料的光催化性能,我们提出了一个可能性的作用机理:金属银和SCN~-协同作用,即银纳米粒子作为光生电子的捕获和传输的一种有效的电子传递介质,而选择性吸附在银表面的SCN~-作为界面活性位点有效地吸附溶液中的质子以促进产氢反应,二者协同作用,加速了g-C_3N_4-Ag–SCN~-三物种界面之间电荷的传输、分离及界面催化反应速率,有效抑制了g-C_3N_4主体材料光生电子和空穴的复合,因而g-C_3N_4/Ag–SCN复合材料的光催化制氢性能提高.考虑到其成本低、效率高,SCN~–助催化剂有很大的潜力广泛应用于制备高性能的银修饰光催化材料.  相似文献   

13.
石墨型氮化碳(g-C_3N_4)是一种新型非金属聚合物半导体材料,具有合理的能带结构、较好的稳定性及卓越的表面性质,因而受到了人们的广泛关注.目前,它作为光催化剂在降解污染物、光催化分解水产氢和光催化还原CO2方面正呈现出巨大的应用潜力.然而,g-C_3N_4可见光响应范围窄、比表面积较小、尤其是光生载流子易复合等缺陷制约着其光催化活性的进一步提高.针对以上问题,人们对g-C_3N_4进行了大量的改性研究,其中构建能级匹配的纳米半导体/g-C_3N_4异质结复合体是常用的有效改善g-C_3N_4光生电荷分离进而提高其光催化活性的手段.但现有相关文献往往忽略了复合体界面接触情况对光生电荷转移和分离的影响,从而在一定程度上影响对光催化性能的改善.本课题组前期工作表明,通过磷氧、硅氧功能桥的建立可加强TiO_2/Fe2O3,Zn O/BiVO_4纳米复合物的界面接触,从而促进光生电荷的迁移和分离,进而进一步提高纳米复合体的光催化活性.这样,通过构建磷氧桥有望改善TiO_2和g-C_3N_4的紧密连接,以促进光生电子由g-C_3N_4向TiO_2的迁移、改善光生载流子的分离,进而更加显著地提高g-C_3N_4的光催化活性.但是相关工作至今尚未见到报道.为此,本文通过简单的湿化学法成功地合成了磷氧(P–O)桥连的TiO_2/g-C_3N_4纳米复合体,并研究了P–O功能桥对TiO_2/g-C_3N_4纳米复合体光生电荷分离及其对光催化降解污染物及还原CO2活性的影响.结果表明,g-C_3N_4与适量的纳米TiO_2复合,尤其是g-C_3N_4与适量P–O桥连TiO_2的复合可进一步提高g-C_3N_4的光催化活性.基于气氛调控的表面光电压谱和光致发光谱等的分析,P-O桥连可促使g-C_3N_4的光生电子由g-C_3N_4向TiO_2转移,极大地促进了g-C_3N_4的光生电荷分离,因而使纳米复合体光催化活性大幅提高,其光催化降解2,4-DCP及还原CO2活性均为g-C_3N_4的3倍.此外,自由基捕获实验表明,·OH作为空穴调控的直接中间产物,其对2,4-DCP的降解起主导作用.  相似文献   

14.
本研究工作使用尿素作为前驱体,通过两步煅烧法得到具有较高比表面积(97 m~2·g~(-1))的g-C_3N_4纳米片。然后,通过简单的水热法将Fe Ni层状双氢氧化物(Fe Ni-LDH)助催化剂负载到g-C_3N_4纳米片上,从而获得基于g-C_3N_4的二维/二维复合光催化剂。实验表明,在二维/二维Fe Ni-LDH/g-C_3N_4复合材料上,光催化还原二氧化碳生成甲醇的产率要远高于在纯g-C_3N_4上获得甲醇的产率。一系列表征结果证明,Fe Ni-LDH/g-C_3N_4复合光催化剂的光吸收得到了增强,同时Fe NiLDH/g-C_3N_4复合光催化剂对二氧化碳的吸附能力也得到了提高。更重要的是,Fe Ni-LDH的引入有效地抑制了光生电子和空穴的复合,进一步提高了g-C_3N_4的光催化二氧化碳还原活性。此外,通过改变用于光催化性能测试的Fe Ni-LDH的负载量,发现Fe Ni-LDH的最佳负载量为4%(质量分数),对应的甲醇生产率为1.64μmol·h~(-1)·g~(-1),是纯的g-C_3N_4的6倍。这项研究提供了一种有效的策略,即通过负载层状铁镍双金属氢氧化物作为助催化剂来提高g-C_3N_4的光催化二氧化碳还原活性。  相似文献   

15.
光催化技术不仅可以将太阳能转化为化学能,还可以直接降解和矿化有机污染物的特性,因而成为最具吸引力和前景的技术之一,被广泛应用于解决环境和能源问题.但是目前,太阳能燃料的最高转化效率为5%,无法满足商业化要求(≥10%).各种光催化材料被探索研究以进一步提高光催化效率.但目前广泛使用的材料都有不同的缺点.比如最常用的金属氧化物(TiO2)由于禁带较宽,仅能利用太阳光中的紫外光,限制了其对光的使用效率;贵金属化合物虽性能优异但成本较高,不宜规模化应用;硫化物或非金属单质一般容易发生光腐蚀,稳定性较差;非金属化合物或聚合物中光生电子和空穴复合率高,活性较低.最近几年,类石墨相氮化碳(g-C_3N_4)以其优异的热稳定性以及化学稳定性,能带结构易调控和前驱体价格低廉等特点而成为目前研究的热点,在光解水制氢产氧、污染物降解、光催化CO_2还原、抗菌和有机官能团选择性转换等领域受到广泛的应用.然而,传统热缩聚法合成的g-C_3N_4光催化剂比表面积小、电荷复合率高、禁带宽度稍微大、光生载流子传输慢,抑制了其光催化活性.为了进一步提高g-C_3N_4的光催化活性,出现了多种改性方法.纳米异质结由于能展现出单组分纳米材料或体相异质结所不具备的独特性质,更能促进光生电子和空穴快速转移,提供更多的光生电子或使光生电子具有更强的还原性而成为研究的热点.从2009年以来,基于g-C_3N_4的异质结结构以其优异的光催化性能吸引了世界各国科学家的关注.本文综述了过渡金属硫化物(TMS)/g-C_3N_4纳米复合材料的最近研究进展,包括:(1)纯g-C_3N_4的制备,(2)g-C_3N_4的改性方法,(3)TMS/g-C_3N_4异质结光催化剂的设计原则,以及(4)能量转换方面的应用.并从以下几个方面对金属硫化物异质结体系的特性和转移机理进行了介绍:(1) I-型异质结,(2)Ⅱ-型异质结,(3) p-n型异质结,(4)肖特基异质结和(5) Z-型异质结.此外,还系统地介绍了g-C_3N_4基异质结光催化剂在光解水、CO_2还原、固氮和污染物降解等方面的应用.最后,本文分析了目前g-C_3N_4光催化剂异质结领域面临的问题和挑战,展望了未来的发展趋势.  相似文献   

16.
光催化技术被认为是解决能源和环境问题的最有前途方法之一.较高光催化活性的石墨相氮化碳(g-C_3N_4)及碳掺杂TiO_2(C-TiO_2)的制备及性能一直是环境光催化研究的热点,然而,单一光催化剂存在光生电子空穴易复合及量子效率低等问题.本课题组曾通过简单的水辅助煅烧法成功制备了纳米多孔g-C_3N_4,结果发现,多孔g-C_3N_4光催化活性较体相的明显提高,但光催化效率仍不够理想,原因是光生电子空穴复合较严重.传统的制备C-TiO_2的方法亦存在一些不足,如需要添加碳源或碳组分聚集体.我们采用原位掺杂的方法合成了含有一定氧空位和活性位的纳米碳改性的C-TiO_2,后辅以简单的化学气相沉积法构建了g-C_3N_4表面修饰的g-C_3N_4@C-TiO_2.结果表明,相比纯g-C_3N_4, TiO_2及C-TiO_2,g-C_3N_4@C-TiO_2具有更高的光催化活性;但其原因及碳掺杂态的影响尚不清楚.基于此,本文采用X射线光电子能谱技术(XPS)、透射电子显微镜(TEM)、电化学阻抗谱(EIS)、光致发光谱(PL)、电子顺磁共振技术(EPR)及理论计算等手段研究了g-C_3N_4@C-TiO_2光催化活性提高的原因和机理.XPS结果表明,随着碳含量的增加,间隙掺杂产生的O-C键的峰值强度先增大后趋于稳定,而晶格取代掺杂产生的Ti-C键的峰值强度逐渐增大.Ti-O峰的减少进一步证明了更多的碳取代了氧晶格的位置.随着碳掺杂量的增加,C-TiO_2的带隙逐渐减小,因而吸收边红移;同时, g-C_3N_4@C-TiO_2的光催化降解效率先升高后降低. g-C_3N_4@C-TiO_2对RhB(苯酚)光降解的最大表观速率常数为0.036(0.039)min-1,分别是纯TiO_2, 10C-TiO_2, g-C_3N_4和g-C_3N_4@TiO_2的150(139), 6.4(6.8), 2.3(3)和1.7(2.1)倍.g-C_3N_4通过π-共轭和氢键与C-TiO_2表面紧密结合,在催化剂中引入了新的非局域杂质能级和表面态,可以更有效地分离和转移光生电子,因而光催化活性增加.由此可见,碳掺杂状态和g-C_3N_4原位沉积表面改性对g-C_3N_4@C-TiO_2复合光催化剂性能的影响很大.  相似文献   

17.
本文通过水热法合成球状Bi_2MoO_6,采用热处理法复合Bi_2MoO6和g-C_3N_4,制备出不同质量比例的g-C_3N_4/Bi_2MoO_6复合型光催化剂.利用X射线衍射、扫描电子显微镜、紫外-可见分光光度计、光致发光光谱仪等技术对所制备的光催化剂进行基本物性表征,分析了样品的微观结构、尺寸形貌和光学性质.g-C_3N_4与Bi_2MoO_6之间理想匹配的能带结构促进了光生载流子转移,进而提升光生电子和空穴的分离率,达到提高光催化活性的目的.g-C_3N_4/Bi_2MoO_6复合材料在可见光下展现出对罗丹明B高效的降解活性,其中Bi_2MoO_6与g-C_3N_4质量比为10%时展示出最佳的光催化降解性能,其降解速率分别为纯g-C_3N_4和Bi_2MoO_6的6.5和3.3倍.  相似文献   

18.
刘志锋  鲁雪 《催化学报》2018,39(9):1527-1533
光电化学分解水制氢可以一并解决环境问题和能源危机,因而成为研究热点.由于TiO_2 禁带宽度较大,不能有效吸收太阳光中的可见光,使光电化学分解水制氢的应用受限.g-C_3N_4的禁带宽度约为2.7 e V,能有效吸收可见光,但g-C_3N_4薄膜制备研究较少.我们通过热聚缩合法直接在FTO导电玻璃上制备出g-C_3N_4薄膜,发现其光电化学分解水制氢稳定性不高,选择易制备的TiO_2 作为保护层可以提高g-C_3N_4的耐用性.此外,为提高g-C_3N_4光生电子空穴对的分离能力,依靠Co-Pi对光生空穴的捕获作用而将其覆盖在最外层.因此本文首次制备一种新型的g-C_3N_4/TiO_2 /Co-Pi光阳极用于光电化学分解水制氢,其中g-C_3N_4用作光吸收层,TiO_2 用作保护层,Co-Pi用作空穴捕获层.并在此基础上,通过扫描电子显微镜(SEM),X射线衍射(XRD),紫外可见光谱(UV-Vis)等手段研究了g-C_3N_4/TiO_2 /Co-Pi光阳极的形貌特征和光电化学性能.SEM、EDS和XRD结果表明,g-C_3N_4/TiO_2 /Co-Pi光阳极被成功制备在了FTO导电玻璃上,厚度约为3μm.UV-Vis测试表明,g-C_3N_4的光吸收边约为470 nm,可以有效地吸收可见光,并且g-C_3N_4的框架结构使光多次反射折射增加了光的捕获能力,由此可见,g-C_3N_4能够发挥很好的光吸收层作用.通过对g-C_3N_4光阳极,g-C_3N_4/TiO_2 光阳极和g-C_3N_4/TiO_2 /Co-Pi光阳极的电流电压测试发现,g-C_3N_4/TiO_2 光阳极的光电流密度小于g-C_3N_4光阳极,而g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密在可逆氢电极1.1 V下达到了0.346 mA?cm–2,约为单独g-C_3N_4光阳极的3.6倍.这说明Co-Pi是提升g-C_3N_4光电化学性能的主要因素.电化学阻抗测试结果发现,g-C_3N_4/TiO_2 /Co-Pi光阳极的界面电荷转移电阻小于g-C_3N_4光阳极的,这表明g-C_3N_4/TiO_2 /Co-Pi光阳极界面处载流子转移较快,同时也能促进内部光生电子空穴对的分离,整体性能的提高应该主要归因于Co-Pi对光生空穴的捕获作用.恒电压时间测试展示出g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密度在2 h测试过程中没有明显下降,表明g-C_3N_4/TiO_2 /Co-Pi光阳极是相当稳定的,具有良好的耐用性,归因于TiO_2 和Co-Pi的共同保护作用,主要归因于TiO_2 层对FTO导电玻璃上的g-C_3N_4薄膜保护,从电化学沉积Co-Pi到所有测试结束.总体而言,g-C_3N_4/TiO_2 /Co-Pi光阳极加强的光电化学性能归因于以下几个因素:(1)g-C_3N_4优异的光吸收能力;(2)TiO_2 稳定的保护提升了g-C_3N_4薄膜的耐用性;(3)Co–Pi对光生空穴的捕获有效促进了光生电子空穴对的分离.  相似文献   

19.
g-C_3N_4是一种新型的稳定的半导体光催化材料,它可以通过热缩聚法、固相反应法、电化学沉积法和溶剂热法等制备.g-C_3N_4禁带宽度约为2.7 eV,吸收边在460 nm左右,具有合适的导带位置,可用作可见光响应制氢的光催化材料,但在实际应用中g-C_3N_4光催化性能较低,其原因可归纳为:(1)g-C_3N_4在吸收光子产生电子和空穴对后,光生载流子的传输速率较慢,容易在体相或表面复合,致使g-C_3N_4的量子效率较低;(2)材料在合成过程中易于结块,使g-C_3N_4的比表面积远小于理论值,严重削弱了g-C_3N_4光催化材料的制氢性能.目前已有很多关于g-C_3N_4改性的报道,但一些方法对材料的处理过程耗时较长或者合成过程较难控制.用助剂改性是提高光催化制氢活性的半导体材料的主要策略之一.合适的助剂可改进电荷分离和加速表面催化反应,从而提高光催化剂的制氢活性.虽然稀有金属或贵金属,如铂、金和银可大大提高g-C_3N_4的制氢速率,但由于其昂贵和稀缺性,因而应用严重受限.因此,开发成本低、储量丰富、高性能助剂来进一步提高制氢性能具有重要意义.NiS_2来源丰富、价格低廉.它可在酸性和碱性的环境保持相对较高的稳定性,且其表面电子结构表现出类金属特性.但它较难与半导体光催化剂形成强耦合和界面,通常需要水热等条件下合成.实验表明,g-C_3N_4表面存在着大量的含氧官能团及未缩合的氨基基团,为表面接枝提供了丰富的反应活性位点,因而可利用g-C_3N_4表面均匀分布的含氧官能团等和Ni~(2+)结合,再原位与S~(2-)反应,从而在g-C_3N_4上负载耦合紧密的NiS_2助剂,进一步提高复合材料的光催化制氢活性.本文采用低温浸渍法制备了NiS_2/g-C_3N_4光催化剂.NiS_2助剂在温和的反应条件下与g-C_3N_4光催化剂复合,可以防止催化剂结构的破坏,同时使得助剂均匀地分散,并紧密结合在催化剂表面,从而大大提高光催化剂的制氢性能.该样品制备过程为:(1)通过水热处理制备含氧官能团和较大比表面积的g-C_3N_4;(2)添加Ni(NO_3)_2前驱体后,Ni~(2+)离子由于静电作用紧密吸附在g-C_3N_4表面;(3)在80℃加入硫代乙酰胺(TAA),可在g-C_3N_4的表面紧密和均匀形成助剂NiS_2.表征结果证实成功制备NiS_2纳米粒子修饰的g-C_3N_4光催化剂.当Ni含量为3 wt%,样品表现出最大的制氢速率(116μmol h~(-1)g~(-1)),明显高于纯g-C_3N_4.此外,对NiS_2/g-C_3N_4(3 wt%)的样品进行光催化性能的循环测试结果表明:该样品在可见光照射下可以保持一个稳定的、有效的光催化制氢性能.根据实验结果,我们提出一个可能的光催化机理:即NiS_2促进了物质表面快速转移光生电子,使g-C_3N_4光生电荷有效分离.基于NiS_2具有成本低和效率高的优点,因而有望广泛应用于制备高性能的光催化材料.  相似文献   

20.
利用浓H_2SO_4(质量分数98%)强的质子化作用与水合放热效应,实现了石墨相氮化碳(g-C_3N_4)在浓H_2SO_4中的快速剥离,制备了经浓H_2SO_4质子化改性的g-C_3N_4(g-C_3N_4-H_2SO_4)纳米带.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、紫外-可见漫反射光谱(UV-Vis DRS)和荧光光谱(PL)等对样品进行了表征分析.结果表明,所制备的g-C_3N_4纳米带与浓H_2SO_4发生了明显的质子化作用.相比体相g-C_3N_4,g-C_3N_4-H_2SO_4纳米带禁带宽度明显增大,光生电子-空穴对复合率有效降低.以亚甲基蓝为目标污染物,研究了g-C_3N_4-H_2SO_4纳米带在紫外光下的光催化活性,结果表明,g-C_3N_4-H_2SO_4纳米带在2 h内对水溶液中MB的降解率可接近100%,紫外光催化性能明显优于体相g-C_3N_4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号