首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two discrete nitrate-bridged novel "pseudo-double-propeller"-shaped hexanuclear Cu/Ln clusters of the formula [Cu(4)Ln(2)L(4)L'(4)(NO(3))(2)(OH(2))(2)]·3NO(3)·4H(2)O [Ln = Dy, Gd; LH = o-vanilin; L'H = 2-(hydroxyethyl)pyridine] were synthesized and characterized. Single-crystal X-ray diffraction studies revealed the trimeric half-propeller-type Cu(2)/Ln core connected to other opposite-handed similar trimers by a bridging nitrate ligand. The Dy analogue, [Cu(4)Dy(2)L(4)L'(4)(NO(3))(2)(OH(2))(2)]·3NO(3)·4H(2)O, shows frequency-dependent out-of-phase alternating-current magnetic susceptibility, which indicates that this novel discrete [Cu(4)Dy(2)] heterometallic cluster may exhibit single-molecule-magnet behavior.  相似文献   

2.
Synthesis, crystal structures and magnetic studies are reported for four new heterometallic Cu(II)-Ln(III) clusters. The reaction of Cu(NO(3))(2)·3H(2)O with triethanolamine (teaH(3)), pivalic acid, triethylamine and Ln(NO(3))(3)·6H(2)O (Ln=Gd, Tb, Dy and Ho) results in the formation of four isostructural nonanuclear complexes of general formula [Cu(II)(5)Ln(III)(4)O(2)(teaH)(4){O(2)CC(CH(3))(3)}(2)(NO(3))(4)(OMe)(4)]·2MeOH·2Et(2)O [Ln=Gd (1), Tb (2), Dy (3) and Ho (4)]. The metal core of each cluster is made up of four face- and vertex-sharing tetrahedral units. Solid-state DC magnetic susceptibility studies reveal competing anti- and ferromagnetic interactions within each cluster leading to large-spin ground states for 1-4. Solid-state AC magnetic susceptibility studies show frequency-dependent out-of-phase (χ'(M)) signals for 2-4 below 4 K, suggestive of single-molecule magnet behaviour. Ab initio calculations on one of the anisotropic examples (3) provided a rare set of J values for Dy-Cu and Cu-Cu exchange interactions (Dy-Dy zero), some ferro- and some antiferromagnetic in character, that explain its magnetic behaviour.  相似文献   

3.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

4.
Seven acetate-diphenoxo triply bridged M(II)-Ln(III) complexes (M(II) = Ni(II) and Ln(III) = Gd, Tb, Ho, Er, and Y; M(II) = Zn(II) and Ln(III) = Ho(III) and Er(III)) of formula [M(μ-L)(μ-OAc)Ln(NO(3))(2)], one nitrate-diphenoxo triply bridged Ni(II)-Tb(III) complex, [Ni(μ-L)(μ-NO(3))Tb(NO(3))(2)]·2CH(3)OH, and two diphenoxo doubly bridged Ni(II)-Ln(III) complexes (Ln(III) = Eu, Gd) of formula [Ni(H(2)O)(μ-L)Ln(NO(3))(3)]·2CH(3)OH have been prepared in one pot reaction from the compartmental ligand N,N',N"-trimethyl-N,N"-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H(2)L). Moreover, Ni(II)-Ln(III) complexes bearing benzoate or 9-anthracenecarboxylate bridging groups of formula [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN have also been successfully synthesized. In acetate-diphenoxo triply bridged complexes, the acetate bridging group forces the structure to be folded with an average hinge angle in the M(μ-O(2))Ln bridging fragment of ~22°, whereas nitrate-diphenoxo doubly bridged complexes and diphenoxo-doubly bridged complexes exhibit more planar structures with hinge angles of ~13° and ~2°, respectively. All Ni(II)-Ln(III) complexes exhibit ferromagnetic interactions between Ni(II) and Ln(III) ions and, in the case of the Gd(III) complexes, the J(NiGd) coupling increases weakly but significantly with the planarity of the M-(O)(2)-Gd bridging fragment and with the increase of the Ni-O-Gd angle. Density functional theory (DFT) theoretical calculations on the Ni(II)Gd(III) complexes and model compounds support these magneto-structural correlations as well as the experimental J(NiGd) values, which were found to be ~1.38 and ~2.1 cm(-1) for the folded [Ni(μ-L)(μ-OAc)Gd(NO(3))(2)] and planar [Ni(H(2)O)(μ-L)Gd(NO(3))(3)]·2CH(3)OH complexes, respectively. The Ni(II)Dy(III) complexes exhibit slow relaxation of the magnetization with Δ/k(B) energy barriers under 1000 Oe applied magnetic fields of 9.2 and 10.1 K for [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN, respectively.  相似文献   

5.
Trinuclear lanthanide complexes of the formula [Ln(3)(PPDA)(NO(3))(6)(H(2)O)(2)].NO(3).2H(2)O where Ln=La(III), Pr(III), Sm(III), Nd(III), Eu(III) Gd(III) Tb(III), Dy(III) and Y(III); H(2)PPDA=N,N'-bis(2-pyridinyl)-2,6-pyridinedicarboxamide, have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility measurements and spectral (IR, NMR, UV-vis, fluorescence, FAB and EPR) and thermal studies.  相似文献   

6.
Lees AM  Platt AW 《Inorganic chemistry》2003,42(15):4673-4679
The reactions of lanthanide nitrates, Ln(NO(3))(3), with bis(diphenylphosphino)methane dioxide, Ph(2)P(O)CH(2)P(O)Ph(2) (L), lead to complexes with three distinct classes of structure. At low ratios of Ln:L (<1:1.5) in acetonitrile the ionic complexes [Ln(NO(3))(2)L(2)](+)[Ln(NO(3))(4)L](-) (Ln = Pr, Eu) have been isolated. When carried out with a 1:2 or higher ratio in ethanol the reaction yields Ln(NO(3))(3)L(2) (Ln = La,Ce) and [Ln(NO(3))(2)L(2)H(2)O](+)[NO(3)](-) (Ln = Nd, Gd, Ho). Geometrical isomerism is found for the cations [Ln(NO(3))(2)L(2)H(2)O](+) and is attributed to the extent of hydrogen bonding to the coordinated water. Ligand redistribution occurs on heating in the solid state giving yellow solids in all cases. Crystallization of these materials from ethanol or acetonitrile gives [Ln(NO(3))L(3)](2+).2[NO(3)](-), which have been structurally characterized for Ln = Gd and Yb. Electrospray mass spectra indicate that extensive ligand exchange reactions occur in solution.  相似文献   

7.
Two isostructural tetranuclear lanthanide clusters of general formula [Ln(III)(4)(μ(3)-OH)(2)(o-van)(4)(O(2)CC(CH(3))(3))(4)(NO(3))(2)]·CH(2)Cl(2)·1.5H(2)O (Ln = Gd (1) and Dy (2)) (o-van = 3-methoxysalicylaldehydato anion) are reported. The metallic cores of both complexes display a planar 'butterfly' arrangement. Magnetic studies show that both are weakly coupled, with 2 displaying probable SMM behaviour.  相似文献   

8.
A series of isostructural 3d-4f coordination clusters (CCs) [Mn(4)Ln(4)(OH)(6)(H(2)L)(2)(H(3)L)(2)(PhCO(2))(2)(N(3))(2)(MeOH)(4)]Cl(1.6)(N(3))(0.4)(NO(3))(2)·2.4H(2)O·1.6MeOH where Ln = Gd, Tb, Dy, Ho and Er and H(5)L = bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane (bis-tris) has been synthesised and structurally characterised. The paramagnetic metal ions within the clusters are weakly antiferromagnetically coupled, with the Tb and Dy compounds displaying slow relaxation of their magnetisation. This is the first report of this versatile ligand being used to target 3d-4f CCs.  相似文献   

9.
The stepwise course of the synthesis of homo- (4f, 4f) and heterodilanthanide (4f, 4f ') complexes has been investigated through structural determination of the intermediate and final products occurring in the process. In the first step, the tripodal ligand H(3)L is reacted with Ln(NO(3))(3) x 5H(2)O to give a complex (H(3)L)Ln(NO(3))(3) in which the ligand does exist in a zwitterionic form. This unexpected feature has been definitely supported by a structural determination performed on a closely related complex (HL')(3)Ln(NO(3))(3) (1). These species are fairly stable and may be isolated. In basic medium, (H(3)L)Ln(NO(3))(3) is deprotonated to yield a neutral LLn complex crystallized as LLnNaClO(4) (2), the lanthanide ion being linked to the inner N(4)O(3) coordination site of the ligand. Finally, addition of Ln'(NO(3))(3) x 5H(2)O (Ln' being similar or different from Ln) to the LLn complex yields the desired homo- or heterodinuclear LLnLn'(NO(3))(3) complex 3, where the Ln' ion is coordinated to the outer O(3)O(3) coordination site of the tripodal ligand. Complex 1 (Ln = La) crystallizes in the triclinic space group P1 (No. 2): a = 11.1883(7) A, b = 11.8993(9) A, c = 16.4197(10) A, alpha = 81.900 (6) degrees, beta = 79.406(5) degrees, gamma = 79.470(6) degrees, V = 2099.5(2) A(3), Z = 2. Complex 2 (Ln = Eu) crystallizes in the monoclinic space group P2(1)/n (No. 14): a = 13.6333(13) A, b = 15.3799(12) A, c = 17.1473(13) A, beta = 111.283(10) degrees, V = 3350.2(5) A(3), Z = 4. Complex 3 (Ln = Ln' = Dy) crystallizes in the trigonal space group R3 (No. 148) with a = b = 23.847(3) A, c = 42.982(2) A, V = 21168(4) A(3), Z = 18. Complex 3 possesses a Dy(O(phenoxo))(3)Dy core, and a nitrato anion has been replaced by a eta(2)-chelated o-vanillin anion. We did not succeed in obtaining crystals of any of the heterodinuclear LLnLn'(NO(3))(3) entities, but their existence was unambiguously confirmed by positive fast atom bombardment mass spectrometry experiments.  相似文献   

10.
Five different types of the lanthanide sulfate-carboxylates family, [La(2)(SO(4))(Himdc)(2)(H2O)2] , [Gd(2)(SO(4))(2)(Himdc)(H2O)3].H2O , [Ln(2)(SO(4))(2)(Himdc)(H2O)(3)].H2O (Ln = Gd3a, Eu3b), [Eu(6)Cu(SO(4))(6)(Himdc)(4)(H2O)(14)] , and [Ln(Himc)(SO(4))(H2O)] (Ln = Eu5a, Gd5b, Tb5c, Dy5d, Er5e); H(2)imc = 4-imidazolecarboxylic acid, H(3)imdc = 4,5-imidazoledicarboxylic acid) have been obtained by hydrothermal reactions of Ln(2)O(3), transition metal sulfates and H(3)imdc at 170 degrees C and characterized by means of elemental analyses, IR, TG analysis, luminescence spectroscopy and single crystal X-ray diffraction. The 3D structure of 1 is constructed from alternately linkages of organic {La(Himdc)} layers and inorganic {La(2)O(2)(SO(4))} layers, with the La atoms as hinges. 2 and 3a/3b both contain alternately arranged 1D left- and right-handed helical {Ln(imdc)} chains bridged by SO(4)(2-) anions to form a 3D framework with 1D rectangle-like channels along the b axis. The structural differences of 2 and 3a/3b lie in the linkages of the SO(4)(2-) anions. Complex 4 consists of 2D tubular Eu-sulfate layers pillared by {Cu(Himdc)(2)} units to generate a 3D network. Complexes 5a-5e possess 2D bamboo-raft-like layer structures based on helical tubes. Interestingly, H(2)imc comes from the in-situ decarboxylation of H(3)imdc in the hydrothermal reactions. The luminescence properties of the complexes 3a, 4, 5a 5c, 5d were investigated in solid state at room temperature.  相似文献   

11.
Employment of the artificial amino acid 2-amino-isobutyric acid, aibH, in Cu(II) and Cu(II)/Ln(III) chemistry led to the isolation and characterization of 12 new heterometallic heptanuclear [Cu(6)Ln(aib)(6)(OH)(3)(OAc)(3)(NO(3))(3)] complexes consisting of trivalent lanthanide centers within a hexanuclear copper trigonal prism (aibH = 2-amino-butyric acid; Ln = Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Ho (9), Er (10), Tm (11), and Yb (12)). Direct curent magnetic susceptibility studies have been carried out in the 5-300 K range for all complexes, revealing the different nature of the magnetic interactions between the 3d-4f metallic pairs: dominant antiferromagnetic interactions for the majority of the pairs and dominant ferromagnetic interactions for when the lanthanide center is Gd(III) and Dy(III). Furthermore, alternating current magnetic susceptibility studies reveal the possibility of single-molecule magnetism behavior for complexes 7 and 8. Finally, complexes 2, 5-8, 10, and 12 were analyzed using positive ion electrospray mass spectrometry (ES-MS), establishing the structural integrity of the heterometallic heptanuclear cage structure in acetonitrile.  相似文献   

12.
Lanthanide(III) complexes of the general formula [Ln(ACAB)(2)(NO(3))(2)(H(2)O)(2)].NO(3).H(2)O where Ln=La(III), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III) and Y(III), ACAB=3-acetylcoumarin-o-aminobenzoylhydrazone have been isolated and characterised based on elemental analyses, molar conductance, IR, (1)H- and (13)C-NMR, UV, TG/DTA and EPR spectral studies. The ligand behaves in bidentate fashion coordinating through hydrazide >C=O and nitrogen of >C=N. A coordination number of ten is assigned to the complexes. Antibacterial and Antifungal studies indicate an enhancement of activity of the ligand on complexation.  相似文献   

13.
Six lanthanide(iii)-2,5-dihydroxy-1,4-benzenedicarboxylate frameworks, namely, [Ln(H(2)-DHBDC)(1.5)(H(2)O)(2)](n) (Ln = La (1) and Pr (2); H(4)-DHBDC = 2,5-dihydroxy-1,4-benzenedicarboxylic acid), {[Nd(H(2)-DHBDC)(1.5)(H(2)O)(3)](H(2)O)}(n) (3), {[Eu(H(2)-DHBDC)(NO(3))(H(2)O)(4)](H(2)O)(2)}(n) (4), and {[Ln(2)(H(2)-DHBDC)(2)(DHBDC)(0.5)(H(2)O)(3)](H(2)O)(4)}(n) (Ln = Gd (5) and Dy (6)), with four different structural types ranging from 1D chain, 2D layer to 3D networks have been synthesized and structurally characterized. Compounds La (1) and Pr (2) are isomorphous and exhibit 3D frameworks with the unique 1D tubular channels. Compounds Nd (3) and Eu (4) are 2D layer and 1D zigzag chain, respectively, which are further extended to 3D supramolecular frameworks through extensive hydrogen bonds. Isomorphous compounds of Gd (5) and Dy (6) are 3D frameworks constructed from secondary infinite rod-shaped metal-carboxylate/hydroxyl building blocks. While the hydroxyl groups as secondary functional groups in the 1D chain of Eu (4) and 2D layer of Nd (3) are not bonded to the lanthanide centers, the hydroxyl groups in the 3D frameworks of La (1), Pr (2), Gd (5), and Dy (6) participate in coordinating to lanthanide centers and thus modify the structural types of theses compounds. The magnetic data of compounds Pr (2), Nd (3), Gd (5), and Dy (6) have been investigated in detail. In addition, elemental analysis, IR spectra, powder X-ray diffraction (PXRD) patterns and thermogravimetric analysis of these compounds are described.  相似文献   

14.
The syntheses, structural determinations and magnetic studies of tetranuclear M(II)Ln(III) complexes (M = Ni, Zn; Ln = Y, Gd, Dy) involving an in situ compartmentalized schiff base ligand HL derived from the condensation of o-vanillin and 2-hydrazinopyridine as main ligand are described. Single-crystal X-ray diffraction reveals that all complexes are closely isostructural, with the central core composed of distorted {M(2)Ln(2)O(4)} cubes of the formulas [Ni(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(4)(H(2)O)(3.5)](ClO(4))(2)·3H(2)O (Ln = Y 1 and Gd 2), [Ni(2)Dy(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)(1.5)](ClO(4))·EtOH·H(2)O (3) and [Zn(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)](ClO(4))·2EtOH·1.5H(2)O (Gd 4 and Dy 5). The Ln(III) ions are linked by two hydroxo bridges and each M(II) ion is also involved in a double phenoxo-hydroxo bridge with the two Ln(III) ions, so that each hydroxo group is triply linked to the two Ln(III) and one M(II) ions. The magnetic properties of all complexes have been investigated. Ni(2)Y(2) (1) has a ferromagnetic Ni(II)Ni(II) interaction. A weak ferromagnetic Ni(II)Ln(III) interaction is observed in the Ni(2)Ln(2) complexes (Ln = Gd 2, Dy 3), along with a weak antiferromagnetic Ln(III)Ln(III) interaction, a D zero-field splitting term for the nickel ion and a ferromagnetic Ni(II)Ni(II) interaction. The isomorphous Zn(2)Ln(2) (Ln = Gd 4, Dy 5) does confirm the presence of a weak antiferromagnetic Ln(III)Ln(III) interaction. The Ni(2)Dy(2) complex (3) does not behave as a SMM, which could result from a subtractive combination of the Dy and Ni anisotropies and an increased transverse anisotropy, leading to large tunnel splittings and quantum tunneling of magnetization. On the other hand, Zn(2)Dy(2) (5) exhibits a possible SMM behavior, where its slow relaxation of magnetization is probably attributed to the presence of the anisotropic Dy(III) ions.  相似文献   

15.
The reaction of triethanolamine (teaH(3)) with [Fe(III)(3)O(O(2)CCH(3))(6)(H(2)O)(3)]Cl·6H(2)O and Ln(NO(3))(3)·6H(2)O in acetonitrile yields [Fe(16)Ln(4)(tea)(8)(teaH)(12)(μ-O(2)CCH(3))(8)](NO(3))(4)·16H(2)O·xMeCN (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5), Ho (6); x = 10 or 11). These 20-membered metallo-ring complexes are the largest such single-stranded oxygen-bridged rings so far reported. The structure is stabilised by two of the acetate ligands, which form anti,anti-bridges across the centre of the ring, pinching the ring and giving it rigidity. The magnetic properties are dominated by the antiferromagnetic couplings between the Fe(III) centres. Although the Fe(2) and Fe(6) sub-chains within the ring are fully spin-compensated at low temperatures with S(subchain) = 0, coupling between the Gd(III) cations and the Fe(III) centres at the ends of the sub-chains (in 3) results in a pinning of the lanthanide spins. The (57)Fe M?ssbauer spectra of 3 and 5 obtained at low temperatures are consistent with the presence of Fe(III) intracluster strong antiferromagnetic coupling. The applied field spectrum for 3 reveals no magnetic hyperfine interaction apart from that of the nucleus with the applied field, while the one for 5 is a superposition of three subspectra which show contributions from each of the peripheral as well as from the central iron sites.  相似文献   

16.
Five novel lanthanoid-containing silicotungstates with polymeric crystal structures [Ln(2)(H(2)O)(7)Si(2)W(18)O(66)](n)(10n-) [Ln = Gd(III) (Gd-1 and Gd-2), Tb(III), Ho(III)] and [Dy(2)(H(2)O)(6.5)(C(2)H(4)O(2))(0.5)Si(2)W(18)O(66)](n)(10n-) were obtained from the one-step reaction of Na(10)[SiW(9)O(34)]·nH(2)O with Ln(NO(3))(3)·nH(2)O in a sodium acetate buffer. The compounds were characterized by single-crystal X-ray diffraction and a wide range of analytical methods, including FT-IR, UV/vis, and photoluminescence spectroscopy as well as electrochemistry and thermogravimetric analysis. This new polyoxotungstate series is the first example of lanthanoids embedded in the open Wells-Dawson silicotungstate anion [α-Si(2)W(18)O(66)](16-). The lanthanoid-containing Wells-Dawson-type polyoxoanions [Ln(2)(H(2)O)(7)Si(2)W(18)O(66)](10-) [Ln = Gd(III) (Gd-1 and Gd-2), Tb(III), Ho(III)] and [Dy(2)(H(2)O)(6.5)(C(2)H(4)O(2))(0.5)Si(2)W(18)O(66)](10-) are linked by Ln(3+) cations to form 3D architectures for Gd-1 or 2D frameworks for the isostructural compounds Tb-2, Dy-2, Ho-2, and Gd-2. The structure-directing influence of the lanthanoid cation on the local structure of the dimeric building blocks and on the crystal packing motifs is investigated in detail. The photoluminescence properties of Tb-2 and Dy-2 were investigated at room temperature, and Ho-2 exhibits an interesting photochromic behavior. The magnetic susceptibility of Gd-1 and Gd-2 was studied in the temperature range between 2 and 300 K for its effective magnetic moment.  相似文献   

17.
The trifluorido complex mer-[CrF(3)(py)(3)] (py = pyridine) reacts with 1 equiv. of [Ln(hfac)(3)(H(2)O)(2)] and depending on the solvent forms the tetranuclear clusters [Cr(2)Ln(2)(μ-F)(4)(μ-OH)(2)(py)(4)(hfac)(6)], 1Ln, and [Cr(2)Ln(2)(μ-F)(4)F(2)(py)(6)(hfac)(6)], 2Ln, in acetonitrile and 1,2-dichloroethane, respectively (Ln = Y, Gd, Tb, Dy, Ho, and Er; hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone). Reaction with [Dy(hfac)(3)(H(2)O)(2)] in dichloromethane produces the dinuclear cluster [CrDy(μ-F)F(OH(2))(py)(3)(hfac)(4)], 3Dy. All the clusters feature fluoride bridges between the chromium(iii) and lanthanide(iii) centres. Fits of susceptibility data for 1Gd and 2Gd reveal the fluoride-mediated chromium(iii)-lanthanide(iii) exchange interactions to be 0.43(5) cm(-1) and 0.57(7) cm(-1), respectively (in the convention). Heat capacity measurements on 2Gd reveal a moderate magneto-caloric effect (MCE) reaching -ΔS(m)(T) = 11.4 J kg(-1) K(-1) for ΔB(0) = 9 T → 0 T at T = 4.1 K. Out-of-phase alternating-current susceptibility (χ') signals are observed for 1Dy, 2Dy and 2Tb, demonstrating slow relaxation of the magnetization.  相似文献   

18.
含草酰胺桥的新型Cu(Ⅱ)-Ln(Ⅲ)双核配合物的合成和磁性   总被引:4,自引:0,他引:4  
合成和表征了六种以草酰胺为桥联的新型异双核配合物,Cu(oxap)Ln(NO2-phen)2.(ClO4)3.oxap代表N, N'-双(2-氨基丙基)草酰胺根阴离子, NO2-phen表示5-硝基-1, 10-邻菲罗啉, Ln为La, Nd, Eu, Gd, Dy, Ho。测定了Cu(oxap)Gd(NO2-phen)2(ClO4)3的变温磁化率(4~300K), 并用最小二乘法和从自旋Hamiltonian算符H=-2JS1.S2导出的磁方程拟合, 求得交换积分J=1.15cm^-^1。文中还用自旋极化理论解释了这种较弱的铁磁性超交换作用。  相似文献   

19.
以三氟乙酰丙酮(tfac)为共配体的稀土配合物分别与5-溴-2-羟基苯取代的自由基配体和5-硝基-2-羟基苯取代的自由基配体进行反应,合成3个稀土-自由基配合物[Ln2(tfac)4(NIT-5Br-2PhO)2](Ln=Gd (1),Dy (2))和[Dy2(tfac)4(NIT-5NO2-2PhO)2](3)(NIT-5Br-2PhOH=2-(2′-hydroxy-5′-bromophenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide,NIT-5NO2-2PhOH=2-(2′-hydroxy-5′-nitrophenyl)-4,4,5,5-tetra-methylimidazoline-1-oxyl-3-oxide)。单晶结构分析表明这3个化合物中的稀土离子均通过自由基配体上的羟基氧基团连接为双核的结构。配合物1的直流磁化率表征揭示了Gd(Ⅲ)离子间的反铁磁耦合对其磁行为起主要作用。  相似文献   

20.
The tripodal ligand tris[4-(2-hydroxy-3-methoxyphenyl)-3-aza-3-buten]amine (LH(3)) is capable of coordinating to two different lanthanide ions to give complexes formulated as [LLnLn'(NO(3))(3)].x H(2)O. The stepwise synthetic procedure consists of introducing first a Ln(III) ion in the inner N(4)O(3) coordination site. The isolated neutral complex LLn is then allowed to react with a second and different Ln' ion that occupies the outer O(6) site, thus yielding a [LLnLn'(NO(3))(3)].x H(2)O complex. A FAB(+) study has confirmed the existence of (Ln, Ln') entities as genuine, when the Ln' ion in the outer site has a larger ionic radius than the Ln ion in the inner site. The qualitative magnetic study of the (Gd, Ln) and (Ln, Gd) complexes, based on the comparison of the magnetic properties of (Gd, Ln) (or (Ln, Gd)) pairs and (Y, Ln) (or (Ln, La)) pairs, is very informative. Indeed, these former complexes are governed by the thermal population of the Ln(III) Stark levels and the Ln-Gd interaction, while the latter are influenced by the thermal population of the Ln(III) Stark levels. We have been able to show that a ferromagnetic interaction exists at low temperature in the (Gd, Nd), (Gd, Ce), and (Yb, Gd) complexes. In contrast, an antiferromagnetic interaction occurs in the (Dy, Gd) and (Er, Gd) complexes. Although we cannot give a quantitative value to these interactions, we can affirm that their magnitudes are weak since they are only perceptible at very low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号