首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation and stability of liquid paraffin-in-water emulsions stabilized solely by positively charged plate-like layered double hydroxides (LDHs) particles were described here. The effects of adding salt into LDHs dispersions on particle zeta potential, particle contact angle, particle adsorption at the oil-water interface and the structure strength of dispersions were studied. It was found that the zeta potential of particles gradually decreased with the increase of salt concentration, but the variation of contact angle with salt concentration was very small. The adsorption of particles at the oil-water interface occurred due to the reduction of particle zeta potential. The structural strength of LDHs dispersions was strengthened with the increase of salt and particle concentrations. The effects of particle concentration, salt concentration and oil phase volume fraction on the formation, stability and type of emulsions were investigated and discussed in relation to the adsorption of particles at the oil-water interface and the structural strength of LDHs dispersions. Finally, the possible stabilization mechanisms of emulsions were put forward: the decrease of particle zeta potential leads to particle adsorption at the oil-water interface and the formation of a network of particles at the interface, both of which are crucial for emulsion formation and stability; the structural strength of LDHs dispersions is responsible for emulsion stability, but is not necessary for emulsion formation.  相似文献   

2.
The stability and rheology of tricaprylin oil-in-water emulsions containing a mixture of surface-active hydrophilic silica nanoparticles and pure nonionic surfactant molecules are reported and compared with those of emulsions stabilized by each emulsifier alone. The importance of the preparation protocol is highlighted. Addition of particles to a surfactant-stabilized emulsion results in the appearance of a small population of large drops due to coalescence, possibly by bridging of adsorbed particles. Addition of surfactant to a particle-stabilized emulsion surprisingly led to increased coalescence too, although the resistance to creaming increased mainly due to an increase in viscosity. Simultaneous emulsification of particles and surfactant led to synergistic stabilization at intermediate concentrations of surfactant; emulsions completely stable to both creaming and coalescence exist at low overall emulsifier concentration. Using the adsorption isotherm of surfactant on particles and the viscosity and optical density of aqueous particle dispersions, we show that the most stable emulsions are formed from dispersions of flocculated, partially hydrophobic particles. From equilibrium contact angle and oil-water interfacial tension measurements, the calculated free energy of adsorption E of a silica particle to the oil-water interface passes through a maximum with respect to surfactant concentration, in line with the emulsion stability optimum. This results from a competition between the influence of particle hydrophobicity and interfacial tension on the magnitude of E.  相似文献   

3.
Emulsions of equal volumes of a cyclic silicone oil and water stabilized by fumed silica nanoparticles alone can be inverted from oil-in-water (o/w) to water-in-oil (w/o) by simply increasing the concentration of particles. The phenomenon is found to be crucially dependent both on the inherent hydrophobicity of the particles and on their initial location. Inversion only occurs in systems with particles of intermediate hydrophobicity when dispersed in oil; emulsions prepared from the same particles but initially dispersed in water remain o/w at all particle concentrations. The stability and drop size distributions in the different emulsions are compared. Various hypotheses are put forward and argued to explain this novel inversion route including adsorption of oil onto particle surfaces, hysteresis of contact angle affecting particle wettability in situ, and the structure of particle dispersions in oil or water prior to emulsification inferred from rheology and light scattering measurements. We propose that the tendency for particles to behave more hydrophobically at higher concentrations in oil is due to the reduction in the effective silanol content at their surfaces as a result of gel formation via silanol-silanol hydrogen bonds. In water, solvation of particle surfaces prevents this from occurring and particles behave as hydrophilic ones at all concentrations. A concentration-induced change in particle wettability is thus advanced.  相似文献   

4.
The zeta potentials and dispersion properties of precipitated calcium carbonate suspensions adsorbed with alkyl polyglycosides in aqueous medium were investigated. Within the investigated pH ranges, the adsorption curves of alkyl polyglycosides on calcium carbonates show sigmoidal shapes, and the zeta potential decreases as the amount of adsorption increases. At positively charged surfaces of low pH, the adsorption amounts were greater than those at negatively charged surfaces, indicating that alkyl polyglycosides were negatively charged in aqueous solutions. At low concentrations of alkyl polyglycosides, the dispersion stabilities of suspensions were very poor and showed no linearity with zeta potentials over the entire range of pHs, which may be attributed to the onset of hydrophobic interaction between particles due to the adsorption of surfactant molecules. This destabilization continued until monolayer coverage by the surfactant layer was complete. Based on the classical DLVO theory, there may be a strong hydrophobic interaction between particles. Beyond monolayer adsorption, the dispersion stability increases, probably by the formation of hemimicelle or admicelle. Therefore, it is believed that ionization of alkyl polyglycosides and admicelles of surfactants on particle surface plays a key role in the stability of dispersions and the abrupt increase in adsorption. Copyright 2000 Academic Press.  相似文献   

5.
We have investigated the potential of utilizing naturally occurring spore particles of Lycopodium clavatum as sole emulsifiers of oil and water mixtures. The preferred emulsions, prepared from either oil-borne or aqueous-borne dispersions of the monodispersed particles of diameter 30 microm, are oil-in-water. The particles act as efficient stabilizers for oils of different polarity. Droplets as large as several millimeters are stable to coalescence indefinitely, despite the low coverage of interfaces by particles observed microscopically. Consistent with the emulsion findings, we discover that particles spontaneously adsorb to bare oil-water interfaces of single drops from oil dispersions, whereas adsorption is less spontaneous and extensive from aqueous dispersions. Monolayers of the spore particles at both air-water and oil-water planar interfaces contain particles in an aggregated state forming clusters and chains. The influence of particle concentration, oil/water ratio, and additives in the aqueous phase is studied.  相似文献   

6.
采用共沉淀法制备了3种形态的MgAl双金属氢氧化物颗粒的水分散体系, 并以其为乳化剂制备了Pickering乳液. 比较了3种颗粒的分散体系及其稳定的Pickering乳液的性质. X射线衍射(XRD)和透射电子显微镜(TEM)表征结果表明, 低结晶度的颗粒以形状不规则、 结构疏松、 表面粗糙的絮状体形式分散于水中, 且颗粒尺寸随高速搅拌分散时间的延长而减小; 而良好结晶的颗粒以形状规则、 结构致密、 表面平滑的六角片存在于水中. Zeta电位测试表明, 3种颗粒在水中均带正电荷, NaCl可降低颗粒的Zeta电位而使其发生絮凝, 但良好结晶颗粒的分散体系在更高NaCl浓度时才出现明显沉淀. 分别采用3种双金属氢氧化物颗粒/NaCl水分散体系制备了水包油(O/W)型Pickering乳液, 并比较了乳液的稳定性. 结果表明, NaCl的引入在一定程度上可提高3类乳液的稳定性; 良好结晶颗粒稳定乳液的能力强于低结晶度的颗粒; 对于低结晶度颗粒, 大颗粒稳定乳液的能力比小颗粒更强.  相似文献   

7.
Particle-stabilized dispersions such as emulsions, foams and bubbles are catching increasing attentions across a number of research areas. The adsorption mechanism and role of these colloidal particles in stabilizing the oil-water or gas-water interfaces and how these particles interact at interfaces are vital to the practical use of these dispersion systems. Although there have been intensive investigations, problems associated with the stabilization mechanisms and particle-particle interactions at interfaces still remain to explore. In this paper, we first systematically review the historical understanding of particle-stabilized emulsions or bubbles and then give an overview of the most important and well-established progress in the understanding of particle-stabilized systems, including emulsions, foams and liquid marbles. The particle-adsorption phenomena have long been realized and been discussed in academic paper for more than one century and a quantitative model was proposed in the early 1980s. The theory can successfully explain the adsorption of solid particles onto interface from energy reduction approaches. The stability of emulsions and foams can be readily correlated to the wettability of the particles towards the two phases. And extensive researches on emulsion stability and various strategies have been developed to prepared dispersion systems with a certain trigger such as pH and temperature. After that, we discuss recent development of the interactions between particles when they are trapped at the interface and highlight open questions in this field. There exists a huge gap between theoretical approaches and experimental results on the interactions of particles adsorbed at interfaces due to demanding experimental devices and skills. In practice, it is customary to use flat surfaces/interfaces as model surfaces to investigate the particle-particle at interfaces although most of the time interfaces are produced with a certain curvature. It is shown that the introduction of particles onto interfaces can generate charges at the interfaces which could possibly account for the long range electrostatic interactions. Finally, we illustrate that particle-stabilized dispersions have been found wide applications in many fields and applications such as microcapsules, food, biomedical carriers, and dry water. One of the most investigated areas is the microencapsulation of actives based on Pickering emulsion templates. The particles adsorbed at the interface can serve as interfacial stabilizers as well as constituting components of shells of colloidal microcapsules. Emulsions stabilized by solid particles derived from natural and bio-related sources are promising platforms to be applied in food related industries. Emulsion systems stabilized by solid particles of the w/w (water-in-water) feature are discussed. This special type of emulsion is attracting increasing attentions due to their all water features. Besides of oil-water interface, particle stabilized air-water interface share similar stabilization mechanism and several applications reported in the literature are subsequently discussed. We hope that this paper can encourage more scientists to engage in the studies of particle-stabilized interfaces and more novel applications can be proposed based on this mechanism  相似文献   

8.
Aqueous dispersions of lightly cross-linked poly(4-vinylpyridine)/silica nanocomposite microgel particles are used as a sole emulsifier of methyl myristate and water (1:1 by volume) at various pH values and salt concentrations at 20 degrees C. These particles become swollen at low pH with the hydrodynamic diameter increasing from 250 nm at pH 8.8 to 630 nm at pH 2.7. For batch emulsions prepared at pH 3.4, oil-in-water (o/w) emulsions are formed that are stable to coalescence but exhibit creaming. Below pH 3.3, however, these emulsions are very unstable to coalescence and rapid phase separation occurs just after homogenization (pH-dependent). The pH for 50% ionization of the pyridine groups in the particles in the bulk (pK(a)) was determined to be 3.4 by acid titration measurements of the aqueous dispersion. Thus, the charged swollen particles no longer adsorb at the oil-water interface. For continuous emulsions (prepared at high pH with the pH then decreased abruptly or progressively), demulsification takes place rapidly below pH 3.3, implying that particles adsorbed at the oil-water interface can become charged (protonated) and detached from the interface in situ (pH-responsive). Furthermore, at a fixed pH of 4.0, addition of sodium chloride to the aqueous dispersion increases the degree of ionization of the particles and batch emulsions are significantly unstable to coalescence at a salt concentration of 0.24 mol kg(-1). The degree of ionization of such microgel particles is a critical factor in controlling the coalescence stability of o/w emulsions stabilized by them.  相似文献   

9.
The formation of particle-stabilised emulsions by adding partially hydrophobised silica particles to surfactant-free oil-in-water emulsions (average drop diameter approximately 700 nm) stabilised by hydroxide ions adsorbed at the oil-water interface has been investigated. Nanoparticles (average particle diameter 18 nm) adsorbed onto the drops under alkaline conditions to produce particle-stabilised emulsions with the same drop size distribution as the surfactant-free emulsions. Unlike the surfactant-free emulsions, the particle-stabilised emulsions were stable even in acidic conditions. Strongly flocculated nanoparticles (average particle diameter 150 nm) adsorbed onto the drop surfaces under acidic conditions where the emulsions were destabilised, forming coarser particle-stabilised emulsions with micron-sized drops.  相似文献   

10.
Neutral polymeric surfactants were synthesized by covalent attachment of hydrophobic groups (aromatic rings) onto a polysaccharide backbone (dextran). By changing the conditions of the modification reaction, the number of grafted hydrophobic groups per 100 glucopyranose units (substitution ratio) was varied between 7 and 22. In aqueous solution, these polymers behaved like classical associative polymers as demonstrated by viscometric measurements. The associative behavior was more pronounced when the substitution ratio increased. The surface-active properties of the modified dextrans were evidenced by surface tension (air/water) and interfacial tension (dodecane/water) measurements. In each case the surface or interfacial tension leveled down above a critical polymer concentration, which was attributed to the formation of a dense polymer layer at the liquid-air or liquid-liquid interface. Dodecane-in-water emulsions were prepared using the polymeric surfactants as stabilizers, with oil volume fractions ranging between 5 and 20%. The oil droplet size (measured by dynamic light scattering) was correlated to the amount of polymer in the aqueous phase and to the volume of emulsified oil. The thickness of the adsorbed polymer layer was estimated thanks to zeta potential measurements coupled with size measurements. This thickness increased with the amount of polymer available for adsorption at the interface. The dextran-based surfactants were also applied to emulsion polymerization of styrene and stable polystyrene particles were obtained with a permanent adsorbed dextran layer at their surface. The comparison with the use of an unmodified dextran indicated that the polymeric surfactants were densely packed at the surface of the particles. The colloidal stability of the suspensions of polystyrene particles as well as their protection against protein adsorption (bovine serum albumin, BSA, used as a test protein) were also examined.  相似文献   

11.
Nonionic polyethylene oxide (PEO) and anionic polyacrylamide (PAM) flocculation of kaolinite dispersions has been investigated at pH 7.5 in the temperature range 20-60 degrees C. The surface chemistry (zeta potential), particle interactions (shear yield stress), and dewatering behavior were also examined. An increase in the magnitude of zeta potential of kaolinite particles, in the absence of flocculant and at a fixed PEO and PAM concentration, with increasing temperature was observed. The zeta potential behavior of the flocculated particles indicated a decrease in the adsorbed polymer layer thickness, while at the same time, however, the adsorbed polymer density showed a significant increase with increasing temperature. These results suggest that polymer adsorption was accompanied by temperature-influenced conformation changes. The hydrodynamic diameter and supernatant solution viscosity of both polymers decreased with increasing temperature, consistent with a change in polymer-solvent interactions and conformation, prior to adsorption. The analysis of the free energy (DeltaG(ads)) of adsorption showed a strong temperature dependence and the adsorption process to be more entropically than enthalpically driven. The polymer conformation change and increased negative charge at the kaolinite particle surface with increasing temperature resulted in decreased polymer bridging and flocculation performance. Consequently, the shear yield stress and the rate and the extent of dewatering (consolidation) of the pulp decreased significantly at higher temperatures (>40 degrees C). The temperature effect was more pronounced in the presence of PEO than PAM, with 40 and 20 degrees C indicated as the optima for enhanced performance of the latter and former flocculants, respectively. The results demonstrate that a temperature-induced conformation change, together with polymer structure type, plays an important role in flocculation and dewatering behavior of kaolinite dispersions.  相似文献   

12.
颗粒乳化剂的研究及应用   总被引:2,自引:0,他引:2  
近年来,颗粒乳化剂因其在食品、采油、化妆品、医药、催化以及功能纳米材料制备等领域具有潜在应用前景而备受关注。本文综述了近来颗粒乳化剂的研究进展,归纳了颗粒乳化剂的种类,包括:无机纳米粒子、表面改性或杂化的无机粒子、有机纳米粒子以及特殊的颗粒乳化剂Janus粒子;并对颗粒乳化剂能够在油水界面稳定吸附的热力学机理和动力学行为进行了阐述,颗粒乳化剂在油水界面接触角以及粒径大小是其在界面稳定吸附的关键参数,而颗粒在油水界面的排布方式则主要受粒子之间相互作用的影响。重点介绍了颗粒乳化剂的热点应用,包括:(1)利用颗粒乳化剂制备Pickering乳液,以及通过对颗粒乳化剂的功能化,使得Pickering乳液具备环境响应性(即pH、盐浓度、温度、紫外光、磁场敏感响应性);(2)以颗粒乳化剂为构筑基元、以Pickering乳液为模板制备Janus颗粒、Colloidosome、具有多级结构的粒子或膜,以及多孔结构材料;(3) Janus粒子在催化领域的应用。  相似文献   

13.
The affinity of weak polyelectrolyte coated oxide particles to the oil-water interface can be controlled by the degree of dissociation and the thickness of the weak polyelectrolyte layer. Thereby the oil in water (o/w) emulsification ability of the particles can be enabled. We selected the weak polyacid poly(methacrylic acid sodium salt) and the weak polybase poly(allylamine hydrochloride) for the surface modification of oppositely charged alumina and silica colloids, respectively. The isoelectric point and the pH range of colloidal stability of both particle-polyelectrolyte composites depend on the thickness of the weak polyelectrolyte layer. The pH-dependent wettability of a weak polyelectrolyte-coated oxide surface is characterized by contact angle measurements. The o/w emulsification properties of both particles for the nonpolar oil dodecane and the more polar oil diethylphthalate are investigated by measurements of the droplet size distributions. Highly stable emulsions can be obtained when the degree of dissociation of the weak polyelectrolyte is below 80%. Here the average droplet size depends on the degree of dissociation, and a minimum can be found when 15 to 45% of the monomer units are dissociated. The thickness of the adsorbed polyelectrolyte layer strongly influences the droplet size of dodecane/water emulsion droplets but has a less pronounced impact on the diethylphthalate/water droplets. We explain the dependency of the droplet size on the emulsion pH value and the polyelectrolyte coating thickness with arguments based on the particle-wetting properties, the particle aggregation state, and the oil phase polarity. Cryo-SEM visualization shows that the regularity of the densely packed particles on the oil-water interface correlates with the degree of dissociation of the corresponding polyelectrolyte.  相似文献   

14.
研究了3种不同结构的水溶性阳离子表面活性剂对纳米二氧化硅颗粒的原位表面活性化作用, 它们分别是单头单尾的十六烷基三甲基溴化铵(CTAB)、单头双尾的双十二烷基二甲基溴化铵(di-C12DMAB)和双头双尾的Gemini型阳离子三亚甲基-二(十四酰氧乙基溴化铵)(II-14-3), 并通过测定Zeta电位、吸附等温线及接触角等参数对相关机理进行了阐述. 结果表明, 阳离子表面活性剂吸附到颗粒/水界面形成以疏水基朝向水的单分子层, 从而增强了颗粒表面的疏水性是原位表面活性化的基础. 通过吸附CTAB和II-14-3, 颗粒的疏水性适当增强, 能吸附到正辛烷/水界面稳定O/W(1)型乳状液; 而通过吸附di-C12DMAB所形成的单分子层更加致密, 颗粒的疏水性进一步增强, 进而使乳状液从O/W(1)型转变为W/O型; 当表面活性剂浓度较高时, 由于链-链相互作用, 表面活性剂分子将在颗粒/水界面形成双层吸附, 使颗粒表面变得亲水而失去活性, 但此时体系中游离表面活性剂的浓度已增加到足以单独稳定O/W(2)型乳状液的程度. 因此当采用纳米二氧化硅和di-C12DMAB的混合物作乳化剂时, 通过增加di-C12DMAB的浓度即可诱导乳状液发生O/W(1)→W/O→O/W(2)双重相转变.  相似文献   

15.
Using a range of complementary experiments, a detailed investigation into the behavior of dodecane-water emulsions stabilized by a mixture of silica nanoparticles and pure cationic surfactant has been made. Both emulsifiers prefer to stabilize o/w emulsions. At high pH, particles are ineffective emulsifiers, whereas surfactant-stabilized emulsions become increasingly stable to coalescence with concentration. In mixtures, no emulsion phase inversion occurs although synergism between the emulsifiers leads to enhanced stability at either fixed surfactant concentration or fixed particle concentration. Emulsions are most stable under conditions where particles have negligible charge and are most flocculated. Freeze fracture scanning electron microscopy confirms the presence of particle flocs at drop interfaces. At low pH, particles and surfactant are good emulsifiers alone. Synergism is also displayed in these mixtures, with the extent of creaming being minimum when particles are most flocculated. Experiments have been undertaken in order to offer an explanation for the latter synergy. By determining the adsorption isotherm of surfactant on particles in water, we show that surfactant addition initially leads to particle flocculation followed by re-dispersion. Using suitable contact angle measurements at oil-water-solid interfaces, we show that silica surfaces initially become increasingly hydrophobic upon surfactant addition, as well as surfactant adsorption lowering the oil-water interfacial tension. A competition exists between the influence of surfactant on the contact angle and the tension in the attachment energy of a particle to the interface.  相似文献   

16.
Magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles   总被引:1,自引:0,他引:1  
Superparamagnetic Fe(3)O(4) nanoparticles prepared by a classical coprecipitation method were used as the stabilizer to prepare magnetic Pickering emulsions, and the effects of particle concentration, oil/water volume ratio, and oil polarity on the type, stability, composition, and morphology of these functional emulsions were investigated. The three-phase contact angle (θ(ow)) of the Fe(3)O(4) nanoparticles at the oil-water interface was evaluated using the Washburn method, and the results showed that for nonpolar and weakly polar oils of dodecane and silicone, θ(ow) is close to 90°, whereas for strongly polar oils of butyl butyrate and 1-decanol, θ(ow) is far below 90°. Inherently hydrophilic Fe(3)O(4) nanoparticles can be used to prepare stable dodecane-water and silicone-water emulsions, but they cannot stabilize butyl butyrate-water and decanol-water mixtures with macroscopic phase separation occurring, which is in good agreement with the contact angle data. Emulsions are of the oil-in-water type for both dodecane and silicone oil, and the average droplet size increases with an increase in the oil volume fraction. For stable emulsions, not all of the particles are adsorbed to drop interfaces; the fraction adsorbed decreases with an increase in the initial oil volume fraction. Changes in the particle concentration have no obvious influence on the stability of these emulsions, even though the droplet size decreases with concentration.  相似文献   

17.
Charge-stabilized dispersions of inorganic colloids are shown to induce spontaneous emulsification of hydrophobic (TPM) molecules to stable oil-in-water emulsions, with monodisperse, mesoscopic oil droplet diameters in the range of 30-150 nm, irrespective of the polydispersity of the starting dispersions. The results for cobalt ferrite particles and commercial silica sols extend our first study (Sacanna, S.; Kegel, W. K.; Philipse, A. Phys. Rev. Lett. 2007, 98, 158301) on spontaneous emulsification induced by charged magnetite colloids and show that this type of self-assembly is quite generic with respect to the composition of the nanoparticles adsorbing at the oil-water interface. Moreover, we provide additional experimental evidence for the thermodynamic stability of these mesoemulsions, including spontaneous oil dispersal imaged by confocal microscopy and monitored in situ by time-resolved dynamic light scattering. We discuss the possibility that thermodynamic stability of the emulsions is provided by the negative tension of the three-phase line between oil, water, and adsorbed colloids.  相似文献   

18.
李财富  张水燕  王君  冯绪胜  孙德军  徐健 《化学学报》2008,66(21):2313-2320
通过表面张力、Zeta电位和流变学参数的测定, 研究了聚氧乙烯烷基醚类非离子型表面活性剂(Brij 30和Brij 35)在合成锂皂石(Laponite)纳米颗粒表面的吸附及对Laponite水分散体系中颗粒间相互作用和体系粘度的影响. 结果表明, 这类表面活性剂能显著地吸附在Laponite颗粒表面上, 且吸附量随其分子中POE链长短而不同. 这种吸附没有改变Laponite粒子的带电性质, 但一定程度地降低了Laponite颗粒Zeta电位; 吸附也会减弱颗粒间的相互作用, 降低体系的粘度. 实验以Laponite和Brij为乳化剂, 制备了O/W型乳状液. 乳液稳定性变化和乳液粒径分布结果表明, 体系中Brij的浓度较低时, 乳液的性质主要是由Laponite颗粒决定的; 而Brij浓度较高时, 则主要取决于Brij表面活性剂. 高速剪切含Brij的Laponite水分散体系, 剪切后表面张力随时间的变化表明, 剪切作用会使得吸附在Laponite颗粒表面的Brij分子不同程度地解吸下来. 这也意味着乳液制备时, 高速剪切作用也会造成Brij分子自Laponite颗粒表面的脱附, 这可能是非离子表面活性剂与阳离子表面活性剂对负电固体颗粒稳定乳液影响不同的原因.  相似文献   

19.
The properties of n-tetradecane/electrolyte emulsions with DPPC or DPPC vesicles in the electrolyte solution were investigated. The DPPC molecules form different aggregates, which possess different surface affinity, size and structure, and therefore we assumed some differences in the adsorption at the oil droplet/water interface. The n-tetradecane emulsions in 1:1, 1:2 and 1:3 electrolytes were prepared by mechanical stirring in the presence of DPPC at natural pH. Electrokinetic properties of the systems were investigated taking into account the effective diameter and multimodal size distribution of the droplets as well as the zeta potentials using the dynamic light scattering technique. The zeta potential of the droplets was negative in all systems with NaCl. In the emulsions with CaCl(2) at a higher concentration of electrolyte and emulsions with LaCl(3) with all investigated concentrations, positive values were observed. Similar measurements were performed for DPPC vesicles in the electrolyte solution. The pH and ionic strength changes induce those in the electrical charge of DPPC layer or vesicle surface. This is due to the fact that the DPPC molecule contains -PO(-) and -N(CH(3))(3) groups, which are in equilibrium with H(+) and OH(-), as well as other ions present in the solution, i.e. Na(+), Ca(2+), La(3+) or Cl(-). In the n-tetradecane/electrolyte emulsion stabilized by DPPC or DPPC vesicles the zeta potential may be also related to acid-base interactions. The effect of the ions from the solution on the DPPC layer adsorbed on n-tetradecane droplets or DPPC vesicles is discussed.  相似文献   

20.
Double inversion of emulsions induced by salt concentration   总被引:1,自引:0,他引:1  
The effects of salt on emulsions containing sorbitan oleate (Span 80) and Laponite particles were investigated. Surprisingly, a novel double phase inversion was induced by simply changing the salt concentration. At fixed concentration of Laponite particles in the aqueous phase and surfactant in paraffin oil, emulsions are oil in water (o/w) when the concentration of NaCl is lower than 5 mM. Emulsions of water in oil (w/o) are obtained when the NaCl concentration is between 5 and 20 mM. Then the emulsions invert to o/w when the salt concentration is higher than 50 mM. In this process, different emulsifiers dominate the composition of the interfacial layer, and the emulsion type is correspondingly controlled. When the salt concentration is low in the aqueous dispersion of Laponite, the particles are discrete and can move to the interface freely. Therefore, the emulsions are stabilized by particles and surfactant, and the type is o/w as particles are in domination. At intermediate salt concentrations, the aqueous dispersions of Laponite are gel-like, the viscosity is high, and the transition of the particles from the aqueous phase to the interface is inhibited. The emulsions are stabilized mainly by lipophilic surfactant, and w/o emulsions are obtained. For high salt concentration, flocculation occurs and the viscosity of the dispersion is reduced; thus, the adsorption of particles is promoted and the type of emulsions inverts to o/w. Laser-induced fluorescent confocal micrographs and cryo transmission electron microscopy clearly confirm the adsorption of Laponite particles on the surface of o/w emulsion droplets, whereas the accumulation of particles at the w/o emulsion droplet surfaces was not observed. This mechanism is also supported by the results of rheology and interfacial tension measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号