首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complex microstructures of amphiphilic ABC linear triblock copolymers in which one of the end blocks is relatively short and hydrophilic, and the other two blocks B and C are hydrophobic in a dilute solution, have been investigated by the real-space implementation of self-consistent field theory (SCFT) in two dimensions (2D). In contrast to diblock copolymers in solution, the aggregation of triblock copolymers are more complicated due to the presence of the second hydrophobic blocks and, hence, big ranges of parameter space controlling the morphology. By tailoring the hydrophobic degree and its difference between the blocks B and C, the various shapes of vesicles, circlelike and linelike micelles possibly corresponding to spherelike, and rodlike micelles in 3D, and especially, peanutlike micelles not found in diblock copolymers are observed. The transition from vesicles to circlelike micelles occurs with increasing the hydrophobicity of the blocks B and C, while the transition from circlelike micelles to linelike micelles or from the mixture of micelles and vesicles to the long linelike micelles takes place when the repulsive interaction of the end hydrophobic block C is stronger than that of the middle hydrophobic block B. Furthermore, it is favorable for dispersion of the block copolymer in the solvent into aggregates when the repulsion of the solvent to the end hydrophobic block is larger than that of the solvent to the middle hydrophobic block. Especially when the bulk block copolymers are in a weak segregation regime, the competition between the microphase separation and macrophase separation exists and the large compound micelle-like aggregates are found due to the macrophase separation with increasing the hydrophobic degree of blocks B and C, which is absent in diblock copolymer solution. The simulation results successfully reproduce the existing experimental ones.  相似文献   

2.
Three amphiphilic rod‐coil diblock copolymers, poly(2‐ethyl‐2‐oxazoline‐b‐γ‐benzyl‐L ‐glutamate) (PEOz‐b‐PBLG), incorporating the same‐length PEOz block length and various lengths of their PBLG blocks, were synthesized through a combining of living cationic and N‐carboxyanhydride (NCA) ring‐opening polymerizations. In the bulk, these block copolymers display thermotropic liquid crystalline behavior. The self‐assembled aggregates that formed from these diblock copolymers in aqueous solution exhibited morphologies that differed from those obtained in α‐helicogenic solvents, that is, solvents in which the PBLG blocks adopt rigid α‐helix conformations. In aqueous solution, the block copolymers self‐assembled into spherical micelles and vesicular aggregates because of their amphiphilic structures. In helicogenic solvents (in this case, toluene and benzyl alcohol), the PEOz‐b‐PBLG copolymers exhibited rod‐coil chain properties, which result in a diverse array of aggregate morphologies (spheres, vesicles, ribbons, and tube nanostructures) and thermoreversible gelation behavior. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3108–3119, 2008  相似文献   

3.
通过大分子引发剂ω-胺基-α-甲氧基聚乙二醇引发N-羧基-α-氨基环内酸酐开环聚合和酸性水解制备了一种具有pH-响应性的三嵌段共聚物聚乙二醇-聚谷氨酸-聚丙氨酸(mPEG-PLGA-PLAA).通过核磁共振、ζ-电势、动态光散射、电子显微镜等手段表征了此类三嵌段共聚物的自组装过程及所形成胶束的pH-响应性.使用圆二色谱和红外光谱,分析了胶束结构随环境pH值转变过程中聚氨基酸链段二级结构的变化.以阿霉素作为模型药物,研究了三嵌段共聚物的载药能力和在不同pH条件下的药物释放能力.在碱性条件下,PLGA链段去质子化,链段从疏水性变为亲水性,胶束中间层由于水合作用变得松散,药物释放速率增加;在酸性条件下,PLGA链段质子化,不带电荷,与阿霉素药物分子间的静电相互作用消失.同时,PLGA链段α-螺旋含量增加,形成由链内氢键维持的刚性棒状结构,将链段周围包埋的药物分子"挤出",加速了药物的释放.  相似文献   

4.
Poly(styrene) 388- block-poly( l-lysine) 138 could be dispersed in water with the aid of the nonionic surfactant C 12E 6. Light scattering and direct imaging techniques show that the copolymer/surfactant aggregates are polydisperse spherical micelles. The rather broad size distribution can be attributed to the glassy state of the polystyrene core of the micelles hampering equilibration. Nevertheless, the poly( l-lysine) block remains pH sensitive in these mixed aggregates and circular dichroism measurements show that poly( l-lysine) block adopts a random coil conformation at low pH and an beta-sheet conformation at pH > or = 11 without any change in the micellar shape. Samples prepared by evaporation of drops of the solutions on graphite wafers exhibit different wetting patterns depending on the polypeptide conformation as indicated by atomic force microscopy.  相似文献   

5.
采用TEM和AFM研究了PS(聚苯乙烯)43-b-PEO(聚氧乙烯)45-b-PS43和PS39-b-P4VP(聚4-乙烯基吡啶)98-b-PS39三嵌段共聚物在水介质中的球形胶束、囊泡和蠕虫状胶束之间的二次聚集行为.实验发现,初级聚集体的二次聚集具有不同的复杂程度.对称性的初级聚集体,如球形胶束和囊泡,其二次聚集表现出球形对称性;而非对称性初级聚集体(如蠕虫状胶束)二次聚集开始倾向于非对称性.BAB型的嵌段设计有利于初级聚集体的二次聚集发生.  相似文献   

6.
The self-assembled morphologies of amphiphilic ABC star triblock copolymers consisting of hydrophilic A blocks and hydrophobic B and C blocks and the blends with their counterpart linear AB diblock copolymers in solution are investigated by 2D real-space implementation of self-consistent field theory (SCFT) simulation. The star triblock copolymers self-assemble in solution to form various micellar structures from hamburger, to segmented wormlike, to toroidal segmented micelles, and finally to vesicles with simultaneously increasing hydrophobic lengths of blocks B and C. When the length of hydrophobic blocks B and C is asymmetric, specific bead-on-string worm micelles are found. Particularly, when the star ABC triblock copolymer is in a strong segregation regime and both B and C blocks are strongly hydrophobic, quite long segmented wormlike micelles are obtained, which had not been found in previously investigated diblock and linear ABC triblock copolymers solution. Additionally, raspberry micelles with beads dispersed on the core also occur in the strong segregation regime of bulk star ABC triblock copolymers. Furthermore, the aggregate morphology of ABC star triblock copolymers is strongly influenced by the addition of linear AB diblock copolymers. The most significant feature is that the long segmented worms will become shorter, to form hamburger micelles with the addition of AB diblock copolymers. These simulations are in good agreement with the experimental findings by Lodge's group.  相似文献   

7.
A series of thermo-responsive cationic triblock copolymers composed of methoxy-poly(ethylene glycol) (MPEG, hydrophilic), poly(N-isopropylacrylamide) (PNIPAAM, temperature sensitive), and poly((3-acrylamidopropyl) trimethyl ammonium chloride) (PN(+), cationic) has been investigated as a function of temperature and ionic strength. In the MPEG-b-PNIPAAM-b-PN(+) copolymers, the MPEG block length is constant, and the lengths of the PNIPAAM and PN(+) blocks are varied. The solubility of the PNIPAAM block decreases with increasing temperature, and the triblock copolymer thus provides the possibilities of studying micelles with both neutral and charged blocks in the micelle corona as well as the interplay between these two blocks as the electrostatic interactions are varied by addition of salt. Investigation of the systems by densitometry and small-angle X-ray scattering (SAXS) in a temperature range from 20 to 70 °C gave detailed information on the behavior both below and above the critical micelle temperature (CMT). A clear effect of the addition of salt is observed in both the apparent partial specific volume, obtained from the densitometry measurements, and the SAXS data. Below the CMT, the single polymers can be described as Gaussian chains, for which the repulsive interchain interactions, originating from the charged PN(+) block, have to be taken into account in salt-free aqueous solution. Increasing the salt concentration of the solution to 30 mM NaCl leads to an increase in the apparent partial specific volume, and the electrostatic repulsive interchain interactions between the single polymers vanish. Raising the temperature results in micelle formation, except for the copolymer with only 20 NIPAAM units. The SAXS data show that the polymer with the medium PNIPAAM block length forms spherical micelles, whereas the polymer with the longest PNIPAAM block forms cylindrical micelles. Increasing the temperature further above the CMT results in an increase in the micellar aggregation number for both of the polymers forming spherical and cylindrical micelles. The addition of salt to the solution also influences the aggregates formed above the CMT. Overall, the micelles formed in the salt solution have a smaller cross-section radius than those in aqueous solution without added salt.  相似文献   

8.
Binary mixtures of amphiphiles in solution can self-assemble into a wide range of structures when the two species individually form aggregates of different curvatures. A specific example of this is seen in solutions of lipid mixtures where the two species form lamellar structures and spherical micelles, respectively. Here, vesicles connected by threadlike micelles can form in a narrow concentration range of the sphere-forming lipid. We present a study of these structures based on self-consistent field theory (SCFT), a coarse-grained model of amphiphiles. First, we show that the addition of sphere-forming lipid to a solution of lamella-former can lower the free energy of cylindrical, threadlike micelles and hence encourage their formation. Next, we demonstrate the coupling between composition and curvature; specifically, that increasing the concentration of sphere-former in a system of two bilayers connected by a thread leads to a transfer of amphiphile to the thread. We further show that the two species are segregated within the structure, with the concentration of sphere-former being significantly higher in the thread. Finally, the addition of larger amounts of sphere-former is found to destabilize the junctions linking the bilayers to the cylindrical micelle, leading to a breakdown of the connected structures. The degree of segregation of the amphiphiles and the amount of sphere-former required to destabilize the junctions is shown to be sensitive to the length of the hydrophilic block of the sphere-forming amphiphiles.  相似文献   

9.
The polydispersity effect of amphiphilic AB diblock copolymers on the self-assembled morphologies in solution has been investigated by the real-space implementation of self-consistent field theory (SCFT) in two dimensions (2D). The polydispersity is artificially obtained by mixing binary diblock copolymers where the hydrophilic or hydrophobic blocks are composed of two different lengths while the other block length is kept the same. The main advantage is that this simple polydispersity can easily distinguish the difference of aggregates in the density distribution of long and short block length intuitionally and quantitatively. The morphology transition from vesicles to micelles is observed with increasing polydispersity of copolymers due to the length segregation of copolymers. For polydisperse hydrophilic or hydrophobic blocks, the short blocks tend to distribute at the interfaces between hydrophilic and hydrophobic blocks while the long blocks stretch to the outer space. More specifically, by quantitatively taking the sum of all the concentration distribution of long and short chains over the inside and outside surface areas of the vesicle, it is found that long blocks prefer to locate on the outside surface of the vesicle while short ones prefer the inside. Such length segregation leads to large curvature of the aggregate, thus resulting in the decrease of the aggregate size.  相似文献   

10.
ABC triblock copolymers with a hydrophilic-thermomorphic-hydrophobic block sequence can assemble into distinct structures in water above and below the lower critical solution temperature for the thermomorphic block. Characterization of aqueous solutions of a representative poly(ethylene oxide)-block-poly(N-isopropylacrylamide)-block-polyisoprene copolymer by light scattering and transmission electron microscopy shows that small spherical micelles are formed at low temperatures and that large vesicles are favored at higher temperatures. The transformation from micelles to vesicles is reversible but slow, occurring over several weeks.  相似文献   

11.
A series of polylactide-poly(ethylene glycol) (PLA-PEG) block copolymers with a high PEG fraction were synthesized by the ring-opening polymerization of L- or D-lactide in the presence of mono- or dihydroxyl PEG using nontoxic zinc lactate as a catalyst. Micelles were then prepared by direct dissolution of the obtained water-soluble copolymers in an aqueous medium without heating or using any organic solvents. Large anisotropic micelles instead of conventional spherical ones were observed from a transmission electron microscopy examination. Various parameters influencing the structure of the novel micelles were considered, such as the copolymer chain structure, molar mass, PEG fraction, copolymer concentration, and stereocomplexation between L- and D-PLA blocks. Anisotropic micelles were obtained for both diblock and triblock copolymers but vanished with increasing molar mass of the copolymers. The morphology of micelles strongly depends on the PEG fraction. Anisotropic micelles were found only in an intermediate EO/LA ratio range in which a higher PEG fraction leads to a higher length/width ratio of micelles. Stereocomplexation between L- and D-PLA or a lower concentration disfavors the formation of anisotropic micelles. Under appropriate concentrations, spherical and anisotropic micelles coexist in the same micellar solution. Moreover, it was found that anisotropic micelles are susceptible to further self-assemble into more organized complex aggregates. Similar results were obtained from light scattering and aqueous gel permeation chromatography measurements. A novel model is proposed to explain the formation of anisotropic micelles and the effects of various parameters on the structure of micelles in an aqueous medium.  相似文献   

12.
采用耗散粒子动力学方法模拟研究了rod-coil-rod 三嵌段共聚物在稀溶液中的聚集行为. 分别考察了rod-coil 嵌段的相互作用、溶剂性质、共聚物浓度以及coil 嵌段长度对聚集体形貌的影响. 模拟结果发现,随着rod-coil 相互排斥作用的增加,共聚物由球形转变成洋葱状、笼形和柱状结构. 随着coil 嵌段疏水性的增加,笼形转变成洋葱状和补丁状结构. 给出了聚集体形貌随共聚物浓度和coil 长度变化的相图. 当浓度较小和coil 嵌段较长时,共聚物形成笼状聚集体,反之,则有利于洋葱状结构的形成.  相似文献   

13.
采用耗散粒子动力学(Dissipative particle dynamics, DPD)模拟方法研究了三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯(PEO-PPO-PEO)的胶束化和凝胶化行为. 通过模拟得到了F127(EO99PO65EO99)水溶液的临界胶束浓度和临界凝胶浓度. 结果发现, 在298 K、 质量分数低于40%时, F127水溶液中形成的胶束形状均为球形. 此外,进一步研究了亲水嵌段长度对胶束结构及凝胶形成浓度的影响, 结果发现, 亲水嵌段越短, 越有利于长椭球状胶束的形成, 而临界凝胶浓度随着亲水嵌段PEO长度的增加而降低.  相似文献   

14.
Biodegradable and biomimetic SPCL-PLAMA biohybrids were synthesized via ATRP and characterized by FT-IR, (1)H NMR, GPC and DSC. Biohybrids with small PDI were obtained, and the block length of the PLAMA glycopolymer could be varied linearly by the varying the molar ratio of glycomonomer to macroinitiator. The outer PLAMA glycopolymer restrained the crystallization of inner PCL segments. The self-assembly properties of amphiphilic biohybrids were studied. Lactose-installed aggregates were fabricated in aqueous solution; they changed from spherical micelles to vesicles with increasing weight fraction of hydrophobic PCL. The SPCL-PLAMA biohybrids showed specific recognition for RCA(120) lectin.  相似文献   

15.
We synthesized tetrameric amphiphilic molecules based on a calixarene building block that self-assembles into a tunable and stable aggregation structure in aqueous solution. The amphiphilic calixarene molecules with a small hydrophilic part were observed to assemble into a vesicular structure that decreases significantly in diameter with only small increases in the hydrophilic chain length. Further increasing the chain length induced the collapse of the vesicles into spherical micelles. Remarkably, the vesicles were also observed to transform into small globular micelles at lower pH, which can be used to trigger the release of the encapsulated hydrophilic guest molecules.  相似文献   

16.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

17.
We report on the discovery of block liposomes, a new class of chain-melted (liquid) vesicles, with membranes comprised of mixtures of the membrane-curvature-stabilizing multivalent lipid MVLBG2 of colossal charge +16 e and neutral 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC). In a narrow MVLBG2 composition range (8-10 mol%), cryo-TEM revealed block liposomes consisting of distinctly shaped, yet connected, nanoscale spheres, pears, tubes, or rods. Unlike typical liposome systems, where spherical vesicles, tubular vesicles, and cylindrical micelles are separated on the macroscopic scale, within a block liposome, shapes are separated on the nanometer scale. Diblock (pear-tube) and triblock (pear-tube-pear) liposomes contain nanotubes with inner lumen diameter of 10-50 nm. Diblock (sphere-rod) liposomes were found to contain micellar nanorods approximately 4 nm in diameter and several micrometers in length, analogous to cytoskeletal filaments of eukaryotic cells. Block liposomes may find a range of applications in chemical and nucleic acid delivery and as building blocks in the design of templates for hierarchical structures.  相似文献   

18.
We present evidence for "living"-like behavior in the crystallization-driven self-assembly of triblock copolymers with crystallizable polyethylene middle blocks into worm-like crystalline-core micelles (CCMs). A new method of seed production is introduced utilizing the selective self-assembly of the triblock copolymers into spherical CCMs in appropriate solvents. Seeded growth of triblock copolymer unimers from these spherical CCMs results in worm-like CCMs with narrow length distributions and mean lengths that depend linearly on the applied unimer-to-seed ratio. Depending on the applied triblock copolymer, polystyrene-block-polyethylene-block-polystyrene (SES) or polystyrene-block-polyethylene-block-poly(methyl methacrylate) (SEM), well-defined worm-like CCMs with a homogeneous or patch-like corona, respectively, can be produced. In a subsequent step, these worm-like CCMs can be used as seeds for the epitaxial growth of a different polyethylene containing triblock copolymer. In this manner, ABA-type triblock co-micelles containing blocks with a homogeneous polystyrene corona and those with a patch-like polystyrene/poly(methyl methacrylate) corona were prepared. While the epitaxial growth of SEM unimers from worm-like SES CCMs with a homogeneous corona yields triblock co-micelles almost quantitatively, the addition of SES unimers to patchy SEM wCCMs results in a mixture of ABA- and AB-type block co-micelles together with residual patchy wCCMs. Following reports on self-assembled block-type architectures from polymers containing core-forming polyferrocenylsilane blocks, these structures represent the first extension of the concept to block co-micelles from purely organic block copolymers.  相似文献   

19.
Cadmium sulfide (CdS) quantum dots (QDs) are formed within poly(ethylene oxide)-block-polystyrene-block-poly (acrylic acid) (PEO-b-PS-b-PAA) triblock copolymer aggregates of different architectures. These structures are obtained starting with the same ionically cross-linked primary micelles consisting of a cadmium acrylate core, a PS shell, and a PEO corona. One morphology is a worm-shaped micelle prepared in tetrahydrofuran (THF) in which the CdS QDs are surrounded by the PAA and aligned as a loose necklace in the PS matrix. The PEO serves as a corona around the PS rod. Another structure is a multicore spherical (ca. 50 nm) water soluble PS micelle, surrounded by PEO chains. The CdS particles within these two latter structures are formed by the reaction of cadmium ions present in the acrylate cores with hydrogen sulfide. In a third structure, the CdS QDs are located on the surface of PS micelles. A fourth spherical single-core micelle structure is postulated to exist in dilute THF solutions. The dimensions in all the aggregates can be controlled by the block length.  相似文献   

20.
The self-aggregation behavior of two amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer samples with nearly identical PHB block lengths but different PEO block lengths, PEO-PHB-PEO(2000-810-2000) and PEO-PHB-PEO(5000-780-5000), was studied with dynamic and static light scattering (DLS and SLS), in combination with fluorescence spectroscopy and transmission electron microscopy (TEM). The formation of polymeric micelles by the two PEO-PHB-PEO triblock copolymers was confirmed with fluorescence technique and TEM. DLS analysis showed that the hydrodynamic radius (R(h)) of the monodistributed polymeric micelles increased with an increase in PEO block length. The relative thermostability of the triblock copolymer micelles was studied by SLS and DLS at different temperatures. The aggregation number and the ratio of the radius of gyration over hydrodynamic radius were found to be independent of temperature, probably due to the strong hydrophobicity of the PHB block. The combination of DLS and SLS studies indicated that the polymeric micelles were composed of a densely packed core of hydrophobic PHB blocks and a corona shell formed by hydrophilic PEO blocks. The aggregation numbers were found to be approximately 53 for PEO-PHB-PEO(2000-810-2000) micelles and approximately 37 for PEO-PHB-PEO(5000-780-5000) micelles. The morphology of PEO-PHB-PEO spherical micelles determined by DLS and SLS measurements was further confirmed by TEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号