首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polypropylene-block-poly(methyl methacrylate) (PP-b-PMMA) and Polypropylene-block-poly(N-isopropylacryramide) (PP-b-PNIPAAm) block copolymers were successfully synthesized by radical polymerizations of MMA or NIPAAm with polypropylene (PP) macroinitiators. Polypropylene macroinitiators were prepared by a series of end functionalization of pyrolysis PP via hydroalumination, oxidation and esterification reactions. The PP macroinitiators thus obtained could initiate radical polymerizations of MMA or NIPAAm by using transition metal catalyst systems, and 1H NMR analysis and gel permeation chromatography measurement confirmed the formation of PP-b-PMMA and PP-b-PNIPAAm block copolymers. In addition, the length of the incorporated PMMA or PNIPAAm segments in these block copolymers was controllable by the feed ratio between the monomer and the PP macroinitiator, and their molecular weights were estimated to be 35700 and 68700 (PMMA) and 1760 and 13300 (PNIPAAm), respectively. Transmission electron microscopy of the polymers obtained by NIPAAm polymerization revealed specific morphological features that reflected the difference of PNIPAAm segment length. The text was submitted by the authors in English.  相似文献   

2.
Copolymers of N-vinylbenzyl N-methyl pyrrolidinium chloride (VBMPC) and methyl methacrylate, PVBMPC-co-poly(methyl methacrylate) (PMMA), were synthesized by free-radical copolymerization and proved to be prone to crosslinking as a result of the reaction of methyl ester groups with benzyl methyl pyrrolidinium chloride (BMPC) moieties at temperatures higher than 110 °C. When the VBMPC content was lower than 20 wt %, these copolymers were miscible with homo-PMMA. Blends of homo-PMMA and PVBMPC-co-PMMA fully could be cured above 150 °C, when the molecular weight of PMMA exceeded 10,000 and the VBMPC content of the copolymer was higher than 5 wt %. This reaction was carried out to crosslink selectively the PMMA microdomains of PMMA-b-poly(isooctyl acrylate) (PIOA)-b-PMMA (MIM) triblock copolymers to explain the mechanism for the mechanical failure of fully (meth)acrylic thermoplastic elastomers. Comparison of the ultimate tensile properties of MIM block copolymers, when the dispersed PMMA phases and PIOA matrix were crosslinked, led to the conclusion that the ductile failure of the hard PMMA microdomains rather than the elastic failure of the PIOA matrix was the reason for the mechanical failure of MIM triblocks. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4402–4411, 1999  相似文献   

3.
Syndiotactic polystyrene graft copolymers, including syndiotactic-polystyrene-graft-poly(methyl methacrylate) and syndiotactic-polystyrene-graft-atactic-polystyrene, were synthesized by atom transfer radical polymerization (ATRP) using bromoacetylated syndiotactic polystyrene as macroinitiator and copper bromide combined with 2,2′-bipyridine as catalyst. The macroinitiator was prepared from the acid-catalyzed halogenation reaction of partially acetylated syndiotactic polystyrene, which was synthesized in a heterogeneous process with acetyl chloride and anhydrous aluminum chloride in carbon disulfide. The graft copolymers were characterized by 1H- and 13C-NMR spectra.  相似文献   

4.
Atom transfer radical polymerization of methyl methacrylate initiated by a poly(oxyethylene) macroinitiator by the esterification of PEG 1500 with 2-chloro propionyl chloride was synthesized. These polymerization proceeds both in bulk and solution with a quantitative initiation efficiency, leading to A-B-A triblock copolymers. The macroinitiators and their block copolymers were characterized by FT-IR, FT-NMR and GPC analyses. In bulk polymerization, the kinetic study showed that the relationship between ln[M]0/[M] vs time was linear showing that there is a constant concentration of active species throughout the polymerization and follow the first order kinetics with respect to monomer. Moreover, the experimental molecular weight of the block copolymers increased linearly with the monomer conversion and the polydispersity index remained between 1.3 and 1.5 throughout the polymerization. No formation of homo poly(methyl methacrylate) could also be detected, and all this confirms that the bulk polymerization proceeds in a controlled/“living” manner.  相似文献   

5.
Amphiphilic triblock copolymers of poly(3-hydroxybutyrate)-poly(ethylene glycol)-poly(3-hydroxybutyrate) (PHB-PEG-PHB) were directly synthesized by the ring-opening copolymerization of β-butyrolactone monomer using PEG as macroinitiator. Their structure, thermal properties and crystallization were investigated by 1H NMR, differential scanning calorimetry (DSC) and X-ray diffraction. It was found that both PHB and PEG blocks were miscible. With the increase in the PHB block length, the triblock copolymers became amorphous because amorphous PHB block remarkably depressed the crystallization of the PEG block. Biodegradable nanoparticles with core-shell structure were prepared in aqueous solution from the amphiphilic triblock copolymers, and characterized by 1H NMR, SEM and fluorescence. The hydrophobic PHB segments formed the central solid-like core, and stabilized by the hydrophilic PEG block. The nanoparticle size was close related to the initial concentrations of the nanoparticle dispersions and the compositions of the triblock copolymers. Moreover, the PHB-PEG-PHB nanoparticles also showed good drug loading properties, which suggested that they were very suitable as delivery vehicles for hydrophobic drugs.  相似文献   

6.
ABCBA‐type pentablock copolymers of methyl methacrylate, styrene, and isobutylene (IB) were prepared by the cationic polymerization of IB in the presence of the α,ω‐dichloro‐PS‐b‐PMMA‐b‐PS triblock copolymer [where PS is polystyrene and PMMA is poly(methyl methacrylate)] as a macroinitiator in conjunction with diethylaluminum chloride (Et2AlCl) as a coinitiator. The macroinitiator was prepared by a two‐step copper‐based atom transfer radical polymerization (ATRP). The reaction temperature, ?78 or ?25 °C, significantly affected the IB content in the resulting copolymers; a higher content was obtained at ?78 °C. The formation of the PIB‐b‐PS‐b‐PMMA‐b‐PS‐b‐PIB copolymers (where PIB is polyisobutylene), prepared at ?25 (20.3 mol % IB) or ?78 °C (61.3 mol % IB; rubbery material), with relatively narrow molecular weight distributions provided direct evidence of the presence of labile chlorine atoms at both ends of the macroinitiator capable of initiation of cationic polymerization of IB. One glass‐transition temperature (Tg), 104.5 °C, was observed for the aforementioned triblock copolymer, and the pentablock copolymer containing 61.3 mol % IB showed two well‐defined Tg's: ?73.0 °C for PIB and 95.6 °C for the PS–PMMA blocks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3823–3830, 2005  相似文献   

7.
The synthesis of well‐defined poly(methyl methacrylate)‐block‐poly(ethylene oxide) (PMMA‐b‐PEO) dibock copolymer through anionic polymerization using monohydroxy telechelic PMMA as macroinitiator is described. Living anionic polymerization of methyl methacrylate was performed using initiators derived from the adduct of diphenylethylene and a suitable alkyllithium, either of which contains a hydroxyl group protected with tert‐butyldimethylsilyl moiety in tetrahydrofuran (THF) at ?78 °C in the presence of LiClO4. The synthesized telechelic PMMAs had good control of molecular weight with narrow molecular weight distribution (MWD). The 1H NMR and MALDI‐TOF MS analysis confirmed quantitative functionalization of chain‐ends. Block copolymerization of ethylene oxide was carried out using the terminal hydroxyl group of PMMA as initiator in the presence of potassium counter ion in THF at 35 °C. The PMMA‐b‐PEO diblock copolymers had moderate control of molecular weight with narrow MWD. The 1H NMR results confirm the absence of trans‐esterification reaction of propagating PEO anions onto the ester pendants of PMMA. The micellation behavior of PMMA‐b‐PEO diblock copolymer was examined in water using 1H NMR and dynamic light scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2132–2144, 2008  相似文献   

8.
To prepare intermediary layer crosslinked micelles, a photocrosslinkable amphiphilic ABC triblock copolymer, poly(ethylene glycol)-b-poly(2-cinnamoyloxyethyl methacrylate)-b-poly(methyl methacrylate) (PEG-PCEMA-PMMA), was synthesized and its micellar characteristics were investigated. The triblock copolymer of PEG-b-poly(2-hydroxyethyl methacrylate)-b-PMMA (PEG-PHEMA-PMMA) (M= 9800 g/mol, Mw/Mn = 1.33) was first polymerized by activators generated by electron transfer (AGET) atom transfer radical polymerization (ATRP) using a PEG macroinitiator in a mixed solvent of anisole/2-isopropanol (3/1 v/v). The middle block of the copolymer was then functionalized with cinnamoyl chloride. The degrees of polymerization of the PEG, PHEMA, and PMMA blocks were 113, 18 and 21, respectively. The critical micelle concentration (CMC) of the PEG-PCEMA-PMMA was 0.011 mg/mL. The PEG-PCEMA-PMMA micelles were spherically shaped with an average diameter of 43 nm. The intermediary layer of the PEG-PCEMA-PMMA micelles was crosslinked by UV irradiation. Not all of the cinnamate groups underwent photocrosslinking probably due to a lack of other cinnamate groups in their immediate vicinity. However, the degree of photocrosslinking of the intermediary layer of the PEG-PCEMA-PMMA micelles was sufficient to give excellent colloidal stability, even in different external environments.  相似文献   

9.
Amphiphilic block copolymers, methoxy poly(ethylene glycol)-b-poly(valerolactone) (mPEG-b-PVL), were synthesized via ring opening polymerization of δ-valerolactone in the presence of methoxy poly(ethylene glycol) (mPEG). The copolymers form micelle-like nanoparticles by their amphiphilic characteristics and their structures were examined by Nuclear Magnetic Resonance (NMR). The sizes of nanoparticles ranged from 60 to 120 nm as measured by dynamic light scattering detection, and were larger with higher molecular weight of the copolymers. The Critical Micelle Concentration (CMC) of these nanoparticles in water decreased with increasing molecular weight of hydrophobic segment. Stability analysis showed that the micellar solutions maintain their sizes at 37 °C for six weeks without aggregation or dissociation. The lyophilization method was better than the evaporation method when camptothecin (CPT) was incorporated to the micelles. The former method yielded higher CPT loading efficiency and lower aggregation. The loading efficiency of CPT could be more than 96% and a steady release rate of CPT was kept for twenty six days. Moreover, the mPEG-b-PVL polymeric micelles offered good protection of CPT lactone form at 37 °C for sixteen days. The copolymers showed no cytotoxicity towards L929 mouse muscular cells when incubated for one day. Taken together, the mPEG-b-PVL copolymer has potential to be used for the delivery of CPT or other similar drugs.  相似文献   

10.
11.
Novel, unique amphiphilic pentablock terpolymers consisting of the highly hydrophobic polyisobutylene (PIB) mid-segment attached to the hydrophilic combshaped poly(poly(ethylene glycol) methacrylate) (PPEGMA) polymacromonomer chains, which are coupled to poly(methyl methacrylate) (PMMA) outer segments were synthesized by the combination of quasiliving carbocationic polymerization and atom transfer radical polymerization (ATRP). First, a bifunctional PIB macroinitiator was prepared by quasiliving carbocationic polymerization and subsequent quantitative chain end derivatizations. Quasiliving ATRP of PEGMAs with different molecular weights (Mn = 188, 300 and 475 g/mol) led to triblock copolymers which were further reacted with MMA under ATRP conditions to obtain PMMA-PPEGMA-PIB-PPEGMA-PMMA ABCBA-type pentablock copolymers. It was found that slow initiation takes place between the PIB macroinitiator and PEGMA macromonomers with higher molecular weights via ATRP. ATRP of MMA with the resulting block copolymers composed of PIB and PPEGMA chain segments led to the desired block copolymers with high initiating efficiency. Investigations of the resulting pentablock copolymers by DSC, SAXS and phase mode AFM revealed that nanophase separation occurs in these new macromolecular structures with average domain distances of 11-14 nm, and local lamellar self-assembly takes place in the pentablocks with PPEGMA polymacromonomer segments of PEGMAs with Mn of 118 g/mol and 300 g/mol, while disordered nanophases are observed in the block copolymer with PEGMA having molecular weight of 475 g/mol. These new amphiphilic block copolymers composed of biocompatible chain segments can find applications in a variety of advanced fields.  相似文献   

12.
Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 85–93, 1998  相似文献   

13.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

14.
A series of poly(sodium styrene sulfonate)-b-poly(methyl methacrylate), PSSNa-b-PMMA, amphiphilic diblock copolymers have been synthesized through atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in N,N-dimethylformamide/water mixtures, starting from a PSSNa macroinitiator. The kinetics of the polymerization was followed by 1H NMR, while the chemical composition of the copolymers was verified by a variety of techniques, such as 1H NMR, FTIR and TGA. The MMA content of the copolymers ranges from 0 up to 60 mol%, while the number–average molecular weight of the PSSNa macroinitiator was 9000 g/mol. The self-association of the diblock copolymers in aqueous solution was compared to the respective behavior of similar random P(SSNa-co-MMA) copolymers through optical density measurements, pyrene fluorescence probing, dynamic light scattering and surface tension measurements. It is shown that the diblock copolymers form micellar structures in water, characterized by an increasing hydrophobic character and a decreasing size as the length of the PMMA block increases. These micelle-like structures turn from surface inactive to surface active as the length of the PMMA block increases. Moreover, contrary to the MMA-rich random copolymers, the respective diblock copolymers form water insoluble polymer/surfactant complexes with cationic surfactants such as hexadecyltrimethyl ammonium bromide (HTAB), leading to materials with antimicrobial activity.  相似文献   

15.
16.
阴离子聚合法合成PMMA-b-PMTFPS嵌段共聚物   总被引:2,自引:1,他引:2  
以含缩醛官能团的有机锂为引发剂, 将甲基丙烯酸甲酯(MMA)与含氟硅氧烷单体1,3,5-三甲基-1,3,5-三(3',3',3'-三氟丙基)环三硅氧烷(F3)阴离子嵌段共聚, 获得了窄分子量分布的聚甲基丙烯酸甲酯-b-聚[甲基(3,3,3-三氟丙基)硅氧烷](PMMA-b-PMTFPS)嵌段共聚物, 并用GPC, 1H NMR, FTIR和DSC对嵌段共聚物进行了表征. 研究结果表明, 在THF中利用PMMA-OLi对F3进行阴离子开环聚合时, 单体F3浓度的选择对提高嵌段共聚物产率至关重要.  相似文献   

17.
Summary: A novel ABC triblock copolymer with a rigid‐rod block was synthesized by atom transfer radical polymerization (ATRP). First, a poly(ethylene oxide) (PEO)‐Br macroinitiator was synthesized by esterification of PEO with 2‐bromoisobutyryl bromide, which was subsequently used in the preparation of a poly(ethylene oxide)‐block‐poly(methyl methacrylate) (PEO‐b‐PMMA) diblock copolymer by ATRP. A poly(ethylene oxide)‐block‐poly(methyl methacrylate)‐block‐poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (PEO‐b‐PMMA‐b‐PMPCS) triblock copolymer was then synthesized by ATRP using PEO‐b‐PMMA as a macroinitiator.

ABC triblock copolymer with a rigid‐rod block.  相似文献   


18.
The crazing and fracture behaviors of glassy–glassy block copolymers were investigated for polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymers that had similar overall molecular weights but different poly(methyl methacrylate) (PMMA) molar fractions. A liquid chromatography technique was applied to separate as-synthesized PS-b-PMMA [(1) weight-average molecular weight (Mw) = 94,000 g/mol and PMMA molar fraction = 0.35 and (2) Mw = 65,000 g/mol and PMMA molar fraction = 0.28] into three fractions with different chemical compositions. With a copper-grid technique, the fracture behaviors of 0.5-μm-thick PS-b-PMMA films were studied as a function of the applied strain. For the higher Mw PS-b-PMMA samples, the median strains at crazing and fibril breakdown increased with an increase in the PMMA molar fraction from 0.24 to 0.46, corresponding to an increase in the chain entanglements in the PMMA domains. In contrast, for the lower Mw samples, the two values were not significantly changed even when the PMMA molar fraction was varied from 0.16 to 0.35. Mw of the minor component in PS-b-PMMA played a critical role in controlling the fracture behaviors of the block copolymers. Specifically, Mw/Me of the minor component (where Me is the molecular weight between entanglements) had to be roughly larger than 2 for the block copolymers to sustain sufficient strains before fracture. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3612–3620, 2006  相似文献   

19.
Poly(methyl methacrylate-co-styrene)-block-polysulfide-block-poly(methyl methacrylate-co-styrene) triblock copolymers were synthesized for the first time by the free radical copolymerization of methyl methacrylate (MMA) and styrene (St) in the presence of a thiocol oligomer as a chain transfer agent, followed by chemical oxidation of the remaining SH-end groups. The apparent chain transfer constant of the thiocol SH groups in the copolymerization reaction was estimated from the rate of consumption of the thiol groups versus the overall rate of consumption of the monomers (CT = 1.28). Based on this value, the chain transfer constant of the thiocol SH groups in St polymerization was calculated . The triblock copolymers synthesized were characterized by SEC and 1H NMR measurements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号