首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromium(III) nutritional supplements are widely consumed for their purported antidiabetic activities. X‐ray fluorescence microscopy (XFM) and X‐ray absorption near‐edge structure (XANES) studies have now shown that non‐toxic doses of [Cr3O(OCOEt)6(OH2)3]+ ( A ), a prospective antidiabetic drug that undergoes similar H2O2 induced oxidation reactions in the blood as other Cr supplements, was also oxidized to carcinogenic CrVI and CrV in living cells. Single adipocytes treated with A had approximately 1 μm large Cr hotspots containing CrIII, CrV, and CrVI (primarily CrVI thiolates) species. These results strongly support the hypothesis that the antidiabetic activity of CrIII and the carcinogenicity of CrVI compounds arise from similar mechanisms involving highly reactive CrVI and CrV intermediates, and highlight concerns over the safety of CrIII nutritional supplements.  相似文献   

2.
The ex‐situ qualitative study of the kinetic formation of the poly‐oxo cluster U38, has been investigated after the solvothermal reaction. The resulting products have been characterized by means of powder XRD and scanning electron microscopy (SEM) for the solid phase and UV/Vis, X‐ray absorption near edge structure (XANES), extended X‐ray absorption fine structure (EXAFS), and NMR spectroscopies for the supernatant liquid phase. The analysis of the different synthesis batches, stopped at different reaction times, revealed the formation of spherical crystallites of UO2 from t=3 h, after the formation of unknown solid phases at an early stage. The crystallization of U38 occurred from t=4 h at the expense of UO2, and is completed after t=8 h. Starting from pure uranium(IV) species in solution (t=0–1 h), oxidation reactions are observed with a UIV/UVI ratio of 70:30 for t=1–3 h. Then, the ratio is inversed with a UIV/UVI ratio of 25/75, when the precipitation of UO2 occurs. Thorough SEM observations of the U38 crystallites showed that the UO2 aggregates are embedded within. This may indicate that UO2 acts as reservoir of uranium(IV), for the formation of U38, stabilized by benzoate and THF ligands. During the early stages of the U38 crystallization, a transient crystallized phase appeared at t=4 h. Its crystal structure revealed a new dodecanuclear moiety (U12), based on the inner hexanuclear core of {U6O8} type, decorated by three additional pairs of dinuclear U2 units. The U12 motif is stabilized by benzoate, oxalates, and glycolate ligands.  相似文献   

3.
The design and synthesis of uranium sorbent materials with high uptake efficiency, capacity and selectivity, as well as excellent hydrolytic stability and radiation resistance remains a challenge. Herein, a polyoxometalate (POM)–organic framework material ( SCU‐19 ) with a rare inclined polycatenation structure was designed, synthesized through a solvothermal method, and tested for uranium separation. Under dark conditions, SCU‐19 can efficiently capture uranium through ligand complexation using its exposed oxo atoms and partial chemical reduction from UVI to UIV by the low‐valent Mo atoms in the POM. An additional UVI photocatalytic reduction mechanism can occur under visible light irradiation, leading to a higher uranium removal without saturation and faster sorption kinetics. SCU‐19 is the only uranium sorbent material with three distinct sorption mechanisms, as further demonstrated by X‐ray photoelectron spectroscopy (XPS) and X‐ray absorption near edge structure (XANES) analysis.  相似文献   

4.
The design and synthesis of uranium sorbent materials with high uptake efficiency, capacity and selectivity, as well as excellent hydrolytic stability and radiation resistance remains a challenge. Herein, a polyoxometalate (POM)–organic framework material ( SCU‐19 ) with a rare inclined polycatenation structure was designed, synthesized through a solvothermal method, and tested for uranium separation. Under dark conditions, SCU‐19 can efficiently capture uranium through ligand complexation using its exposed oxo atoms and partial chemical reduction from UVI to UIV by the low‐valent Mo atoms in the POM. An additional UVI photocatalytic reduction mechanism can occur under visible light irradiation, leading to a higher uranium removal without saturation and faster sorption kinetics. SCU‐19 is the only uranium sorbent material with three distinct sorption mechanisms, as further demonstrated by X‐ray photoelectron spectroscopy (XPS) and X‐ray absorption near edge structure (XANES) analysis.  相似文献   

5.
Reduction of uranyl(VI) to UV and to UIV is important in uranium environmental migration and remediation processes. The anaerobic reduction of a uranyl UVI complex supported by a picolinate ligand in both organic and aqueous media is presented. The [UVIO2(dpaea)] complex is readily converted into the cis‐boroxide UIV species via diborane‐mediated reductive functionalization in organic media. Remarkably, in aqueous media the uranyl(VI) complex is rapidly converted, by Na2S2O4, a reductant relevant for chemical remediation processes, into the stable uranyl(V) analogue, which is then slowly reduced to yield a water‐insoluble trinuclear UIV oxo‐hydroxo cluster. This report provides the first example of direct conversion of a uranyl(VI) compound into a well‐defined molecular UIV species in aqueous conditions.  相似文献   

6.
Behavior of UVI, NpVI and PuVI in water‐acetonitrile solutions was studied spectrophotometrically with the successive addition of the polar organic ligands (dimethyl sulfoxide or hexamethylphosphoric triamide) and the NCS ion. The detected spectral effects – changes in the absorption intensity, bathochromic shifts in the absorption bands, the absence of isosbestic points, a change in the color of the solution – indicate complex competitive processes occurring in the studied solutions. In the case of NpVI, its partial reduction to NpIV by NCS ion is observed. Solid UVI complex, [UO2(HMPA)2(NCS)2], was isolated, its crystal structure was determined using X‐ray diffraction. In contrast to known AnO22+ compounds with the NCS ion, this complex exhibits tetragonal bipyramidal environment of the U atom. [UO2(HMPA)2(NCS)2] is also characterized by UV/Vis, IR and luminescence spectroscopy.  相似文献   

7.
FT–IR spectroscopy and single‐crystal X‐ray structure analysis were used to characterize the discrete neutral compound diaquadioxidobis(n‐valerato‐κ2O,O′)uranium(VI), [UO2(C4H9COO)2(H2O)2], (I), and the ionic compound potassium dioxidotris(n‐valerato‐κ2O,O′)uranium(VI), K[UO2(C4H9COO)3], (II). The UVI cation in neutral (I) is at a site of 2/m symmetry. Potassium salt (II) has two U centres and two K+ cations residing on twofold axes, while a third independent formula unit is on a general position. The ligands in both compounds were found to suffer severe disorder. The FT–IR spectroscopic results agree with the X‐ray data. The composition and structure of the ionic potassium uranyl valerate are similar to those of previously reported potassium uranyl complexes with acetate, propionate and butyrate ligands. Progressive lengthening of the alkyl groups in these otherwise similar compounds was found to have an impact on their structures, including on the number of independent U and K+ sites, on the coordination modes of some of the K+ centres and on the minimum distances between U atoms. The evolution of the KUO6 frameworks in the four homologous compounds is analysed in detail, revealing a new example of three‐dimensional topological isomerism in coordination compounds of UVI.  相似文献   

8.
Reduction of uranyl(VI) to UV and to UIV is important in uranium environmental migration and remediation processes. The anaerobic reduction of a uranyl UVI complex supported by a picolinate ligand in both organic and aqueous media is presented. The [UVIO2(dpaea)] complex is readily converted into the cis-boroxide UIV species via diborane-mediated reductive functionalization in organic media. Remarkably, in aqueous media the uranyl(VI) complex is rapidly converted, by Na2S2O4, a reductant relevant for chemical remediation processes, into the stable uranyl(V) analogue, which is then slowly reduced to yield a water-insoluble trinuclear UIV oxo-hydroxo cluster. This report provides the first example of direct conversion of a uranyl(VI) compound into a well-defined molecular UIV species in aqueous conditions.  相似文献   

9.
A dramatic difference in the ability of the reducing AnIII center in AnCp3 (An=U, Np, Pu; Cp=C5H5) to oxo‐bind and reduce the uranyl(VI) dication in the complex [(UO2)(THF)(H2L)] (L=“Pacman” Schiff‐base polypyrrolic macrocycle), is found and explained. These are the first selective functionalizations of the uranyl oxo by another actinide cation. At‐first contradictory electronic structural data are explained by combining theory and experiment. Complete one‐electron transfer from Cp3U forms the UIV‐uranyl(V) compound that behaves as a UV‐localized single molecule magnet below 4 K. The extent of reduction by the Cp3Np group upon oxo‐coordination is much less, with a NpIII‐uranyl(VI) dative bond assigned. Solution NMR and NIR spectroscopy suggest NpIVUV but single‐crystal X‐ray diffraction and SQUID magnetometry suggest a NpIII‐UVI assignment. DFT‐calculated Hirshfeld charge and spin density analyses suggest half an electron has transferred, and these explain the strongly shifted NMR spectra by spin density contributions at the hydrogen nuclei. The PuIII–UVI interaction is too weak to be observed in THF solvent, in agreement with calculated predictions.  相似文献   

10.
A dramatic difference in the ability of the reducing AnIII center in AnCp3 (An=U, Np, Pu; Cp=C5H5) to oxo‐bind and reduce the uranyl(VI) dication in the complex [(UO2)(THF)(H2L)] (L=“Pacman” Schiff‐base polypyrrolic macrocycle), is found and explained. These are the first selective functionalizations of the uranyl oxo by another actinide cation. At‐first contradictory electronic structural data are explained by combining theory and experiment. Complete one‐electron transfer from Cp3U forms the UIV‐uranyl(V) compound that behaves as a UV‐localized single molecule magnet below 4 K. The extent of reduction by the Cp3Np group upon oxo‐coordination is much less, with a NpIII‐uranyl(VI) dative bond assigned. Solution NMR and NIR spectroscopy suggest NpIVUV but single‐crystal X‐ray diffraction and SQUID magnetometry suggest a NpIII‐UVI assignment. DFT‐calculated Hirshfeld charge and spin density analyses suggest half an electron has transferred, and these explain the strongly shifted NMR spectra by spin density contributions at the hydrogen nuclei. The PuIII–UVI interaction is too weak to be observed in THF solvent, in agreement with calculated predictions.  相似文献   

11.
The electronic structure of UV‐ and UVI‐containing uranates NaUO3 and Pb3UO6 was studied by using an advanced technique, namely X‐ray absorption spectroscopy (XAS) in high‐energy‐resolution fluorescence‐detection (HERFD) mode. Due to a significant reduction in core–hole lifetime broadening, the crystal‐field splittings of the 5f shell were probed directly in HERFD‐XAS spectra collected at the U 3d edge, which is not possible by using conventional XAS. In addition, the charge‐transfer satellites that result from U 5f–O 2p hybridization were clearly resolved. The crystal‐field parameters, 5f occupancy, and degree of covalency of the chemical bonding in these uranates were estimated by using the Anderson impurity model by calculating the U 3d HERFD‐XAS, conventional XAS, core‐to‐core (U 4f–3d transitions) resonant inelastic X‐ray scattering (RIXS), and U 4f X‐ray photoelectron spectra. The crystal field was found to be strong in these systems and the 5f occupancy was determined to be 1.32 and 0.84 electrons in the ground state for NaUO3 and Pb3UO6, respectively, which indicates a significant covalent character for these compounds.  相似文献   

12.
Reported here is a comparison of electron transfer dissociation (ETD) and collision‐induced dissociation (CID) of solvent‐coordinated dipositive uranyl and plutonyl ions generated by electrospray ionization. Fundamental differences between the ETD and CID processes are apparent, as are differences between the intrinsic chemistries of uranyl and plutonyl. Reduction of both charge and oxidation state, which is inherent in ETD activation of [AnVIO2(CH3COCH3)4]2+, [AnVIO2(CH3CN)4]2, [UVIO2(CH3COCH3)5]2+ and [UVIO2(CH3CN)5]2+ (An = U or Pu), is accompanied by ligand loss. Resulting low‐coordinate uranyl(V) complexes add O2, whereas plutonyl(V) complexes do not. In contrast, CID of the same complexes generates predominantly doubly‐charged products through loss of coordinating ligands. Singly‐charged CID products of [UVIO2(CH3COCH3)4,5]2+, [UVIO2(CH3CN)4,5]2+ and [PuVIO2(CH3CN)4]2+ retain the hexavalent metal oxidation state with the addition of hydroxide or acetone enolate anion ligands. However, CID of [PuVIO2(CH3COCH3)4]2+ generates monopositive plutonyl(V) complexes, reflecting relatively more facile reduction of PuVI to PuV. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The combination of high atomic number and high oxidation state in UVI materials gives rise to both high X‐ray attenuation efficiency and intense green luminescence originating from ligand‐to‐metal charge transfer. These two features suggest that UVI materials might act as superior X‐ray scintillators, but this postulate has remained substantially untested. Now the first observation of intense X‐ray scintillation in a uranyl–organic framework ( SCU‐9 ) that is observable by the naked eye is reported. Combining the advantage in minimizing the non‐radiative relaxation during the X‐ray excitation process over those of inorganic salts of uranium, SCU‐9 exhibits a very efficient X‐ray to green light luminescence conversion. The luminescence intensity shows an essentially linear correlation with the received X‐ray intensity, and is comparable with that of commercially available CsI:Tl. SCU‐9 possesses an improved X‐ray attenuation efficiency (E>20 keV) as well as enhanced radiation resistance and decreased hygroscopy compared to CsI:Tl.  相似文献   

14.
The determination of the two species of uranium(VI and IV) present in 6 uranium ores was studied in relation to the chemical and mineralogical composition, humidity, and pH of the samples taken over from the mine. X‐ray diffraction studies, performed on the uranium ores in powder form allowed to establish their mineralogical composition. Thechemical analysis pointed out the presence, besides the two uranium species, of some microelements able to influence the UVI/UIV ratio in minerals and to leach out UVI as uranyl ions from the corresponding minerals.  相似文献   

15.
Five mixed‐metal mixed‐valence Mo/V polyoxoanions, templated by the pyramidal SeO32? heteroanion have been isolated: K10[MoVI12VV10O58(SeO3)8]?18 H2O ( 1 ), K7[MoVI11VV5VIV2O52(SeO3)]?31 H2O ( 2 ), (NH4)7K3[MoVI11VV5VIV2O52(SeO3)(MoV6VV‐ O22)]?40 H2O ( 3 ), (NH4)19K3[MoVI20VV12VIV4O99(SeO3)10]?36 H2O ( 4 ) and [Na3(H2O)5{Mo18?xVxO52(SeO3)} {Mo9?yVyO24(SeO3)4}] ( 5 ). All five compounds were characterised by single‐crystal X‐ray structure analysis, TGA, UV/Vis and FT‐IR spectroscopy, redox titrations, and elemental and flame atomic absorption spectroscopy (FAAS) analysis. X‐ray studies revealed two novel coordination modes for the selenite anion in compounds 1 and 4 showing η,μ and μ,μ coordination motifs. Compounds 1 and 2 were characterised in solution by using high‐resolution ESI‐MS. The ESI‐MS spectra of these compounds revealed characteristic patterns showing distribution envelopes corresponding to 2? and 3? anionic charge states. Also, the isolation of these compounds shows that it may be possible to direct the self‐assembly process of the mixed‐metal systems by controlling the interplay between the cation “shrink‐wrapping” effect, the non‐conventional geometry of the selenite anion and fine adjustment of the experimental variables. Also a detailed IR spectroscopic analysis unveiled a simple way to identify the type of coordination mode of the selenite anions present in POM‐based architectures.  相似文献   

16.
Addition of KC8 to trivalent [UI3(thf)4] in the presence of three equivalents of 2,6‐diisopropylphenylazide (N3DIPP) results in the formation of the hexavalent uranium tris(imido) complex [U(NDIPP)3(thf)3] ( 1 ) through a facile, single‐step synthesis. The X‐ray crystal structure shows an octahedral complex that adopts a facial orientation of the imido substituents. This structural trend is maintained during the single‐electron reduction of 1 to form dimeric [U(NDIPP)3{K(Et2O)}]2 ( 2 ). Variable‐temperature/field magnetization studies of 2 show two independent UV 5f 1 centers, with no antiferromagnetic coupling present. Characterization of these complexes was accomplished using single‐crystal X‐ray diffraction, variable‐temperature 1H NMR spectroscopy, as well as IR and UV/Vis absorption spectroscopic studies.  相似文献   

17.
Addition of KC8 to trivalent [UI3(thf)4] in the presence of three equivalents of 2,6‐diisopropylphenylazide (N3DIPP) results in the formation of the hexavalent uranium tris(imido) complex [U(NDIPP)3(thf)3] ( 1 ) through a facile, single‐step synthesis. The X‐ray crystal structure shows an octahedral complex that adopts a facial orientation of the imido substituents. This structural trend is maintained during the single‐electron reduction of 1 to form dimeric [U(NDIPP)3{K(Et2O)}]2 ( 2 ). Variable‐temperature/field magnetization studies of 2 show two independent UV 5f 1 centers, with no antiferromagnetic coupling present. Characterization of these complexes was accomplished using single‐crystal X‐ray diffraction, variable‐temperature 1H NMR spectroscopy, as well as IR and UV/Vis absorption spectroscopic studies.  相似文献   

18.
The dynamics of the transfer of electrons stored in TiO2 nanoparticles to AsIII, AsV, and uranyl nitrate in water was investigated by using the stopped‐flow technique. Suspensions of TiO2 nanoparticles with stored trapped electrons (etrap?) were mixed with solutions of acceptor species to evaluate the reactivity by following the temporal evolution of etrap? by the decrease in the absorbance at λ=600 nm. The results indicate that AsV and AsIII cannot be reduced by etrap? under the reaction conditions. In addition, it was observed that the presence of AsV and AsIII strongly modified the reaction rate between O2 and etrap?: an increase in the rate was observed if AsV was present and a decrease in the rate was observed in the presence of AsIII. In contrast with the As system, UVI was observed to react easily with etrap? and UIV formation was observed spectroscopically at λ=650 nm. The possible competence of UVI and NO3? for their reduction by etrap? was analyzed. The inhibition of the UVI photocatalytic reduction by O2 could be attributed to the fast oxidation of UV and/or UIV.  相似文献   

19.
Actinide oxo clusters are an important class of compounds due to their impact on actinide migration in the environment. The photolytic reduction of uranyl(VI) has potential application in catalysis and spent nuclear fuel reprocessing, but the intermediate species involved in this reduction have not yet been elucidated. Here we show that the photolysis of partially hydrated uranyl(VI) in anaerobic conditions leads to the reduction of uranyl(VI), and to the incorporation of the resulting UV species into the stable mixed‐valent star‐shaped UVI/UV oxo cluster [U(UO2)53‐O)5(PhCOO)5(Py)7] ( 1 ). This cluster is only the second example of a UVI/UV cluster and the first one associating uranyl groups to a non‐uranyl(V) center. The UV center in 1 is stable, while the reaction of uranyl(V) iodide with potassium benzoate leads to immediate disproportionation and formation of the U12IVU4VO24 cluster {[K(Py)2]2[K(Py)]2[U16O24(PhCOO)24(Py)2]} ( 5 ).  相似文献   

20.
Through a solid‐state reaction, a practically phase pure powder of Ba3V2S4O3 was obtained. The crystal structure was confirmed by X‐ray single‐crystal and synchrotron X‐ray powder diffraction (P63, a=10.1620(2), c=5.93212(1) Å). X‐ray absorption spectroscopy, in conjunction with multiplet calculations, clearly describes the vanadium in charge‐disproportionated VIIIS6 and VVSO3 coordinations. The compound is shown to be a strongly correlated Mott insulator, which contradicts previous predictions. Magnetic and specific heat measurements suggest dominant antiferromagnetic spin interactions concomitant with a weak residual ferromagnetic component, and that intrinsic geometric frustration prevents long‐range order from evolving.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号