首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality.  相似文献   

2.
We studied the feasibility of the microaerobic process, in comparison with the traditional chemical absorption process (NaOH), on H2S removal in order to improve the biogas quality. The experiment consisted of two systems: R1, biogas from an anaerobic reactor was washed in a NaOH solution, and R2, headspace microaeration with atmospheric air in a former anaerobic reactor. The microaeration used for low sulfate concentration wastewater did not affect the anaerobic digestion, but even increased system stability. Methane production in the R2 was 14 % lower compared to R1, due to biogas dilution by the atmospheric air used. The presence of oxygen in the biogas reveals that not all the oxygen was consumed for sulfide oxidation in the liquid phase indicating mass transfer limitations. The reactor was able to rapidly recover its capacity on H2S removal after an operational failure. Bacterial and archaeal richness shifted due to changes in operational parameters, which match with the system functioning. Finally, the microaerobic system seems to be more advantageous for both technical and economical reasons, in which the payback of microaerobic process for H2S removal was 4.7 months.  相似文献   

3.
Microalgae may be a potential feedstock for biogas production through anaerobic digestion. However, this process is limited by the hydrolytic stage, due to the complex and resistant microalgae cell wall components. This fact hinders biomass conversion into biogas, demanding the application of pretreatment techniques for inducing cell damage and/or lysis and organic matter solubilisation. In this study, sonication, thermal, ultrasound, homogeneizer, hydrothermal and steam explosion pretreatments were evaluated in different conditions for comparing their effects on anaerobic digestion performance in batch reactors. The results showed that the highest biomass solubilisation values were reached for steam explosion (65–73%) and ultrasound (33–57%). In fact, only applied energies higher than 220 W or temperatures higher than 80 °C induced cell wall lysis in C. sorokiniana. Nonetheless, the highest methane yields were not correlated to biogas production. Thermal hydrolysis and steam explosion showed lower methane yields in respect to non-pretreated biomass, suggesting the presence of toxic compounds that inhibited the biological process. Accordingly, these pretreatment techniques led to a negative energy balance. The best pretreatment method among the ones evaluated was thermal pretreatment, with four times more energy produced that demanded.  相似文献   

4.
5.
Pretreatment methods play an important role in the improvement of biogas production from the anaerobic digestion of energy grass. In this study, conventional thermal and microwave methods were performed on raw material, namely, Pennisetum hybrid, to analyze the effect of pretreatment on anaerobic digestion by the calculation of performance parameters using Logistic function, modified Gompertz equation, and transference function. Results indicated that thermal pretreatment improved the biogas production of Pennisetum hybrid, whereas microwave method had an adverse effect on the performance. All the models fit the experimental data with R 2 > 0.980, and the Reaction Curve presented the best agreement in the fitting process. Conventional thermal pretreatment showed an increasing effect on maximum production rate and total methane produced, with an improvement of around 7% and 8%, respectively. With regard to microwave pretreatment, maximum production rate and total methane produced decreased by 18% and 12%, respectively.  相似文献   

6.
The performances of rice straw (RS) degradation and biogas production were examined at different pretreatment temperatures from 90℃ to 130℃ to improve biogas fermentation efficiency and net energy production in whole slurry. Test at 100℃ pretreatment, which achieved 12.8% higher net energy production from RS than that observed in the control, could be considered as the optimal choice.  相似文献   

7.
As a lignocellulose-based substrate for anaerobic digestion, rice straw is characterized by low density, high water absorbability, and poor fluidity. Its mixing performances in digestion are completely different from traditional substrates such as animal manures. Computational fluid dynamics (CFD) simulation was employed to investigate mixing performances and determine suitable stirring parameters for efficient biogas production from rice straw. The results from CFD simulation were applied in the anaerobic digestion tests to further investigate their reliability. The results indicated that the mixing performances could be improved by triple impellers with pitched blade, and complete mixing was easily achieved at the stirring rate of 80 rpm, as compared to 20–60 rpm. However, mixing could not be significantly improved when the stirring rate was further increased from 80 to 160 rpm. The simulation results agreed well with the experimental results. The determined mixing parameters could achieve the highest biogas yield of 370 mL (g TS)?1 (729 mL (g TSdigested)?1) and 431 mL (g TS)?1 (632 mL (g TSdigested)?1) with the shortest technical digestion time (T 80) of 46 days. The results obtained in this work could provide useful guides for the design and operation of biogas plants using rice straw as substrates.  相似文献   

8.
Ye Wang 《催化学报》2021,42(12):2091-2093
正Producing biofuels from renewable biomass resources is considered to be an effective way to reduce carbon emissions and is helpful for establishing sustainable society [1]. Bio‐methane (CH4) is a promising and available clean energy in the future owing to its properties such as high calorific values, low carbon emissions and full miscibility and interchangeability with natural gas or shale gas. Therefore, the production of me‐thane directly from waste biomass resources like straw is highly attractive. However, because of the robustness and vari‐ety of C–C bonds and C–O bonds existing in biomass molecules,it is very difficult to achieve high‐selective methanation of bio‐  相似文献   

9.
We studied biogas fermentation from alcohol waste fluid to evaluate the anaerobic digestion process and the production of vitamin B12 as a byproduct. Anaerobic digestion using acclimated methanogens was performed using the continuously stirred tank reactor (CSTR) and fixed-bed reactor packed with rock wool as carrier material at 55°C. We also studied the effects of metal ions added to the culture broth on methane and vitamin B12 formation. Vitamin B12 production was 2.92 mg/L in the broth of the fixed-bed reactor, twice that of the CSTR. The optimum concentrations of trace metal ions added to the culture liquid for methane and vitamin B12 production were 1.0 and 8 mL/L for the CSTR and fixed-bed reactor, respectively. Furthermore, an effective method for extracting and purifying vitamin B12 from digested fluid was developed.  相似文献   

10.
Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application with reduced environmental impacts. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion [>15% total solid (TS)] has an advantage over wet digestion (<10% TS) because it allows for the use of a smaller volume of reactor and because it reduces wastewater production. In addition, it produces a fertilizer that is easier to transport. Performance of anaerobic digestion of animal manure–switchgrass mixture was evaluated under dry (15% TS) and thermophilic conditions (55 °C). Three different mixtures of animal manure (swine, poultry, and dairy) and switchgrass were digested using batch-operated 1-L reactors. The swine manure test units showed 52.9% volatile solids (VS) removal during the 62-day trial, while dairy and poultry manure test units showed 9.3% and 20.2%, respectively. Over the 62 day digestion, the swine manure test units yielded the highest amount of methane 0.337 L CH4 /g VS, while the dairy and poultry manure test units showed very poor methane yield 0.028 L CH4/g VS and 0.002 L CH4/g VS, respectively. Although dairy and poultry manure performed poorly, they may still have high potential as biomass for dry anaerobic digestion if appropriate designs are developed to prevent significant volatile fatty acid (VFA) accumulation and pH drop.  相似文献   

11.
Novel, laboratory-scale, high-solids reactors operated under mesophilic conditions were used to study the anaerobic fermentation of processed municipal solid waste (MSW) to methane. Product gas rate data were determined for organic loading rates ranging from 2.99–18.46 g of volatile solids (VS) per liter (L) per day (d). The data represent the anaerobic fermentation at high-solids levels within the reactor of 21–32%, while feeding a refuse-derived fuel (RDF)/MSW feedstock supplemented with a vitamin/mineral/nutrient solution. The average biogas yield was 0.59 L biogas/g VS added to the reactor system/d. The average methane composition of the biogas produced was 57.2%. The data indicate a linear relationship of increasing total biogas production with increasing organic loading rate to the process. The maximum organic loading rate obtainable with high-solids anaerobic digestion is in the range of 18–20 g VS/L·d to obtain 80% or greater bioconversion for the RDF/MSW feedstock. This loading rate is approximately four to six times greater than that which can be obtained with comparable low-solids anaerobic bioreactor technology.  相似文献   

12.
A wide variety of organic residues may be used as energy source such as anaerobic sludge from wastewater treatment systems. However, due to inherent differences in composition, the proper characterization of these biomasses is essential to support their reuse through any conversion process. The aim of this study was the employment of thermal analysis techniques (TG/DTG and DTA) to perform the characterization of anaerobic sludges from different wastewater treatment plants (industrial and municipal), which were further applied for biological production of H2. The different profiles observed through thermal characterization support the application of these residues as inocula, confirming their potential for H2 production, while demonstrating the main causes for the different yields obtained (mol H2 mol?1 sucrose): 0.9 from sludge of brewery industry and 2.0 from sludge of municipal wastewater treatment plant, corresponding to the overall yields of 10.8 and 25%, respectively. These results confirm the versatility of thermal analysis techniques for biomass characterization, focused on its application for power generation. It is urgent to adopt more sustainable and cost-effective solutions for their management, considering a large amount of residues daily generated in both treatment processes addressed; therefore, biohydrogen production by anaerobic digestion may be a promising alternative for the reuse of both residues as it promotes their transformation from costly and potentially polluting waste into clean and renewable energy sources. The development of this anaerobic process is even more attractive in countries as Brazil, where the weather conditions are naturally favorable.  相似文献   

13.
This study investigated acid splitting wastewater (ASW) and interphase (IF) from soapstock splitting, as well as matter organic non glycerol (MONG) from glycerol processing, as potential substrates for biogas production. Batch and semicontinuous thermophilic anaerobic digestion experiments were conducted, and the substrates were preliminary treated using commercial enzymes kindly delivered by Novozymes A/C. The greatest enhancement in the batch digestion efficiency was achieved when three preparations; EversaTransform, NovoShape, and Lecitase were applied in the hydrolysis stage, which resulted in the maximum methane yields of 937 NL/kg VS and 915 NL/kg VS obtained from IF and MONG, respectively. The co-digestion of 68% ASW, 16% IF, and 16% MONG (wet weight basis) performed at an organic loading rate (OLR) of 1.5 kg VS/m3/day provided an average methane yield of 515 NLCH4/kg VSadded and a volatile solid reduction of nearly 95%. A relatively high concentration of sulfates in the feed did not significantly affect the digestion performance but resulted in an increased hydrogen sulfide concentration in the biogas with the peak of 4000 ppm.  相似文献   

14.
Alkali pre-treatment of Sorghum Moench for biogas production   总被引:1,自引:0,他引:1  
This work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L?1) and chemical oxygen demand value (ca. 45 g L?1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.  相似文献   

15.
In this work, different pretreatment methods for algae proved to be very effective in improving cell wall dissociation for biogas production. In this study, the Ulva intestinalis Linnaeus (U. intestinalis) has been exposed to individual pretreatments of (ultrasonic, ozone, microwave, and green synthesized Fe3O4) and in a combination of the first three mentioned pretreatments methods with magnetite (Fe3O4) NPs, (ultrasonic-Fe3O4, ozone-Fe3O4 and microwave-Fe3O4) in different treatment times. Moreover, the green synthesized Fe3O4 NPs has been confirmed by FTIR, TEM, XRD, SEM, EDEX, PSA and BET. The maximum biogas production of 179 and 206 mL/g VS have been attained when U. intestinalis has been treated with ultrasonic only and when combined microwave with Fe3O4 respectively, where sediment were used as inoculum in all pretreatments. From the obtained results, green Fe3O4 NPs enhanced the microwave (MW) treatment to produce a higher biogas yield (206 mL/g VS) when compared with individual MW (84 mL/g VS). The modified Gompertz model (R2 = 0.996 was appropriate model to match the calculated biogas production and could be used more practically to distinguish the kinetics of the anaerobic digestion (AD) period. The assessment of XRD, SEM and FTIR discovered the influence of different treatment techniques on the cell wall structure of U. intestinalis.  相似文献   

16.
Organic wastes are increasingly collected source separated, thus requiring additional treatment or recovery capacities for municipal biowastes, organic industrial wastes, as well as agroindustrial byproducts. In this study, we demonstrate that anaerobic digestion is preferentially suited for high-water-containing liquid or pasty waste materials. We also evaluate the suitability of various organic wastes and byproducts as substrates for anaerobic digestion and provide a current status survey of codigestion. Biodegradation tests and estimations of the biogas yield were carried out with semisolid and pasty proteins and lipids containing byproducts from slaughterhouses; pharmaceutical, food, and beverage industries; distilleries; and municipal biowastes. Biogas yields in batch tests ranged from 0.3 to 1.36 L/g of volatile solidsadded. In continuous fermentation tests, hydraulic retention times (HRTs) between 12 and 60 d, at a fermentation temperature of 35°C, were required for stable operation and maximum gas yield. Laboratory experiments were scaled up to full-scale codigestion trials in municipal and agricultural digestion plants. Up to 30% cosubstrate addition was investigated, using municipal sewage sludge as well as cattle manure as basic substrate. Depending on addition rate and cosubstrate composition, the digester biogas productivity could be increased by 80–400%. About 5–15% cosubstrate addition proved to be best suited, without causing any detrimental effects on the digestion process or on the further use of the digestate.  相似文献   

17.
In this study, single-stage and two-phase semi-continuous thermophilic anaerobic reactors fed with diluted (3 % total solids (TS) and 1.8 % volatile solids (VS)) chicken manure at three different hydraulic retention times (HRTs) were compared interms of biogas production rate, methane content of the produced biogas, and VS and TS removal. Along the study, HRTs of 16, 12, and 8 days were implemented to the single-stage and the two-phase systems. It was observed that the single-stage anaerobic system was superior to the two-phase anaerobic system according to their biogas production rates (517 vs. 356, 551 vs. 359, 459 vs. 386 (mL/g VSfeed)) at all HRTs. On the other hand, methane content of the biogas produced was higher in the two-phase system compared to the single-stage system.  相似文献   

18.
Digestate is characterized by high water content, and in the water and wastewater treatment settings, necessitates both large storage capacities and a high cost of disposal. By seeding digestate with four magnetic nanoparticles (MNPs), this study aimed to recover biogas and boost its methane potential anaerobically. This was carried out via biochemical methane potential (BMP) tests with five 1 L bioreactors, with a working volume of 80% and 20% head space. These were operated under anaerobic conditions at a temperature 40 °C for a 30 d incubation period. The SEM/EDX results revealed that the morphological surface area of the digestate with the MNPs increased as compared to its raw state. Comparatively, the degree of degradation of the bioreactors with MNPs resulted in over 75% decontamination (COD, color, and turbidity) as compared to the control system result of 60% without MNPs. The highest biogas production (400 mL/day) and methane yield (100% CH4) was attained with 2 g of Fe2O4-TiO2 MNPs as compared to the control biogas production (350 mL/day) and methane yield (65% CH4). Economically, the highest energy balance achieved was estimated as 320.49 ZAR/kWh, or 22.89 USD/kWh in annual energy savings for this same system. These findings demonstrate that digestate seeded with MNPs has great potential to improve decontamination efficiency, biogas production and circular economy in wastewater management.  相似文献   

19.
Overall measurement of methanogenic activity of sludge and or slurry is thought as a key for understanding the basic physiology of anaerobic consortia involved in anaerobic digestion process of an alternative biomass. In this study, the methanogenic activity of biogas plant slurry was used to evaluate the anaerobic digestion of ossein factory wastes such as sinews and primary clarified bone waste (PCBW) and cyanobacterial biomass in standard assay conditions. A maximum methanogenic activity was reported here when ossein factory wastes mixed with cyanobacterial biomass in specific proportions in which sinews and PCBW alone also favored to a significant methane yield. Cyanobacterial biomass alone did not give a desirable methanogenic activity. Approximately 48% of total solids were destroyed from these wastes after 30 days. This study gives information on the use of these wastes with suitable proportions for taking an effort in a large-scale anaerobic digestion in an effective way of ossein factory.  相似文献   

20.

Vinasse, from sugar and ethanol production, stands out as one of the most problematic agroindustry wastes due to its high chemical oxygen demand, large production volume, and recalcitrant compounds. Therefore, the viability of using glycerin as a co-substrate in vinasse anaerobic digestion was tested, to increase process efficiency and biogas productivity. The effect of feeding strategy, influent concentration, cycle length, and temperature were assessed to optimize methane production. Glycerin (1.53% v/v) proved to be a good co-substrate since it increased the overall methane production in co-digestion assays. CH4 productivity enhanced exponentially as influent concentration increased, but when temperature was increased to 35 °C, biogas production was impaired. The highest methane productivity and yield were achieved using fed-batch mode, at 30 °C and at an organic loading rate of 10.1 kg COD m−3 day−1: 139.32 mol CH4 m−3 day−1, 13.86 mol CH4 kg CODapplied, and 15.30 mol CH4 kg CODremoved. Methane was predominantly produced through the hydrogenotrophic route. In order to treat all the vinasse produced by a mid-size sugar and ethanol plant, nine reactors with 7263.4 m3 each would be needed. The energy generated by burning the biogas in boilers would reach approximately 92,000 MW h per season and could save up to US$ 240,000.00 per month in diesel oil demand.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号