首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitosan ofloxacin complex was prepared in isopropyl alcohol under mild conditions. The ionic complexation between chitosan and ofloxacin was confirmed by Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopy. The crystallinity, thermal, surface morphology and optical properties were evaluated by X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence (PL) spectroscopy and second harmonic generation (SHG) studies, respectively. Absorption of the complex was high (106cm?1) with an optical band gap of 3.80 eV. The chitosan-ofloxacin complex may be considered as a novel optical material from biomedical application point of views. It may find applications as biosensors and environmentally sensitive membranes and artificial membranes.  相似文献   

2.
A novel approach was developed to overcome the non-uniform distribution of grafted polystyrene (PS) chains across proton exchange membranes (PEMs) manufactured using radiation induced graft polymerization of commercialized fluoropolymer films. This process involves the three key steps of grafting of styrene into fluoropolymer powder, processing the grafted powder into membranes, and then obtaining the PEM by sulfonation of these membranes. The structure of the membranes and the PEMs were analyzed by means of infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope with energy-dispersive X-ray analysis (SEM-EDX) to demonstrate the uniform distribution of poly(styrene-sulfonic acid) (denoted as PSSA) graft-chains across the PEM. The properties of the resulting PEMs, such as their ion exchange capacity (IEC), water uptake (WU), proton conductivity, dimensional stability, oxidative stability and thermal stability, were also investigated.  相似文献   

3.
通过对聚乙烯醇(PVA)/季铵化羟乙基乙氧基纤维素(QHECE)共混膜进行聚乙二醇(PEG)聚塑化改性, 采用物理-化学交联联用法制备了PVA/QHECE/PEG碱性阴离子交换复合膜. 通过交流(AC)阻抗、 傅里叶变换红外光谱(FTIR)、 扫描电子显微镜(SEM)、 热重分析(TGA)、 气相色谱(GC)和拉伸实验等手段考察了不同PEG添加量对膜的离子电导率、 分子结构、 微观形貌、 热稳定性、 力学强度、 甲醇渗透率和耐碱稳定性等性能. 结果表明, PEG的加入(除最小比例外)提高了膜的离子电导率和力学强度并使其柔韧性增大. 同时, 膜的热稳定性比未添加PEG时提高了40℃. 将PVA/QHECE/PEG膜在80℃, 6 mol/L KOH浓碱溶液中浸渍处理264 h, 膜的电导率从1.06×10-3 S/cm提高到3.88×10-3 S/cm, 而膜的外观和力学强度及含水率未发生明显变化, 表明该膜具有很好的耐碱化学稳定性. 此外, 以3 mol/L甲醇溶液为测试目标, 膜的甲醇渗透率<10-7 cm2/s, 仅为商业用Nafion®膜的1/20~1/40.  相似文献   

4.
采用sol-gel法成功制备了一系列有望用于高温质子交换膜燃料电池的新型磺化聚醚砜(SPES)/磷酸硼(BPO4)复合膜, 并经热重分析(TGA)-傅立叶变换红外光谱(FTIR)联用技术、差示扫描量热仪(DSC)、扫描电子显微镜(SEM)等对膜的结构和性能进行了表征. 结果表明, 复合膜较纯SPES膜具有更高的热稳定性和玻璃化转变温度, 较低的溶胀性及较高的氧化稳定性; SEM图片显示BPO4在聚合物基体中的分布十分均匀, 这将有利于连续质子传输通道的形成; 复合膜的质子传导率随BPO4含量的增加而增加, 当温度超过120 ℃后, 复合膜仍保持着较高的质子传导率, 这表明该复合膜在高温质子交换膜燃料电池中具有良好的应用前景.  相似文献   

5.
Polybenzimidazoles (PBIs) are among the polymers of choice to prepare membranes for high temperature polymer fuel cells. Poly-2,2'(2,6-pyridine)-5,5'-bibenzimidazole (PBI5N), doped with H(3)PO(4), and acid-doped PBI5N containing 10 wt% of imidazole-functionalized silica membranes were studied with thermogravimetric analysis, differential scanning calorimetry, dynamic-mechanical analysis, infrared spectroscopy, and broadband electric spectroscopy to examine the structure-property relationships. Key results show that: (1) doped PBI5N membranes show thermal decomposition starting at 120 °C, while pristine PBI5N is stable up to 300 °C; (2) the presence of filler increases the acid uptake and decreases the crystallinity of PBI5N; (3) the addition of phosphoric acid reduces the mechanical properties of the membrane, while the addition of filler has the opposite effect; (4) acid-doped membranes have conductivity values on the order of 10(-2)-10(-3) S cm(-1); and (5) membranes exhibit a Vogel-Tamman-Fulcher (VTF) type proton conduction mechanism, where proton hopping is coupled with the segmental motion of the polymer chain. Infrared spectroscopy combined with DFT quantum mechanical calculations was used to assign the experimental spectrum of PBI5N.  相似文献   

6.
为了提高膜的阻醇性能和高温下的质子传导性, 在磺化聚醚砜(SPES)中掺杂一种吸湿性的无机物AlOOH, 制备了一种新型的SPES/AlOOH复合质子交换膜. 并经傅里叶变换红外(FTIR)光谱、热失重(TGA)、扫描电镜(SEM)等手段对膜的结构和性能进行了表征. 结果表明: 复合膜较纯SPES膜具有更高的热稳定性和吸水率; SEM图片显示AlOOH在膜中分布均匀. 复合膜在高温下具有良好的质子传导性, 掺杂量为10%(w)的复合膜在120 °C下的质子传导率仍可保持在0.014 S·cm-1左右; 随着AlOOH含量的增加, 复合膜的阻醇性能大大提高, 这表明该复合膜在直接甲醇燃料电池中具有良好的应用前景.  相似文献   

7.
Block copolymers of poly(pentafluorostyrene) (PFS) and poly(tert-butyl acrylate) (PtBA), or PFS-b-PtBA copolymers, were synthesized via consecutive atom transfer radical polymerizations (ATRPs). Amphiphilic block copolymers of PFS and poly(acrylic acid) (PFS-b-PAAC copolymers) were prepared via hydrolysis of the corresponding PFS-b-PtBA copolymers. The chemical structure and composition of the PFS-b-PtBA and PFS-b-PAAC block copolymers were studied by nuclear magnetic resonance (NMR) spectroscopy, themogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The amphiphilic PFS-b-PAAC copolymers were cast into porous membranes by phase inversion in aqueous media. The surface and cross-sectional morphology of the PFS-b-PAAC membranes were studied by scanning electron microscopy (SEM). Membranes with well-defined pores of sizes in the micrometer range were obtained as a result of inverse micelle formation. The pH of the aqueous media for phase inversion and the PAAC content in the PFS-b-PAAC copolymers could be used to adjust the pore size of the membranes.  相似文献   

8.
In this paper, the mechanism of thrombus formation on the surface of polymeric materials and the various approaches of modifying biomaterial surfaces to improve their hemocompatibility are reviewed. Moreover, the blood compatibility of the cellulose membrane grafted with O-butyrylchitosan (OBCS) by using a radiation grafting technique was studied. Surface analysis of grafted cellulose membrane was verified by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and electron spectroscopy for chemical analysis (ESCA), which confirmed that OBCS was successfully grafted onto the cellulose membrane surfaces. Blood compatibility of the grafted cellulose membranes was evaluated by platelet rich plasma (PRP) contacting experiments and protein adsorption experiments using blank cellulose membranes as the control. The blood compatibility of OBCS grafted cellulose membranes is better than that of blank cellulose membranes. These results suggest that the photocrosslinkable chitosan developed here has the potential of serving in blood-contacting applications in medical use.  相似文献   

9.
Surface functionalization of the plasma‐pretreated polycarbonate (PC) track‐etched membranes via plasma‐induced thermally graft copolymerization of acrylic acid (AAc) was carried out. The resulting PC membranes with grafted AAc side chains were characterized by X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis. The morphology of the PC membranes was studied by scanning electron microscopy (SEM). The results showed that the grafted PAAc polymers were formed uniformly inside the pores throughout the entire membrane thickness. With increase in the pore‐filling ratio, the pore diameters of PAAc‐grafted membranes became smaller. The PC‐g‐PAAc membranes exhibit rapid and reversible response of the flux to the environmental pH as pH is switched between 3 and 9. Between pH 3.5 and 5.5, the membranes demonstrate a pH‐valve function as the carboxyl group changes from neutral to charged with a corresponding variation in chain configuration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Three kinds of amphiphilic polymers, including the tri-block copolymer of (polyethylene oxide)–(polypropylene oxide)–(polyethylene oxide) (I, EPTBP), the comb-like copolymer of polysiloxane with polyethylene oxide and polypropylene oxide side chains (II, ACPS) and the hyperbranched star copolymer of polyester-g-methoxyl polyethylene glycol (III, HPE-g-MPEG), were blended with PVDF to fabricate porous membranes via a phase inversion process, respectively, and the effects of the different structures of the amphiphilic polymers on the properties of the blend membranes were compared. The membranes were characterized by scanning electron microscopy (SEM), elemental analysis, X-ray photoelectron spectroscopy (XPS) analysis, mercury porosimetry, water contact angle measurements, etc. The anti-fouling properties of the prepared membranes were evaluated by static and dynamic bovine serum albumin (BSA) adsorptions. Specially, the stabilities of these amphiphilic polymers in the final membranes were estimated by continuous leaching tests. At the same time, the properties of the membranes using the amphiphilic polymers as modifiers were compared with those of the membrane using poly(ethylene glycol) (PEG) as modifier.  相似文献   

11.
Collagen-chitosan (COL-CS) membranes materials without a cross-linking agent have poor mechanical properties. In this paper, COL-CS membranes were modified by a novel naturally-derived crosslinker, alginate dialdehyde (ADA) with different oxidation degree, and the COL-CS-ADA films were obtained. COL-CS-ADA films were characterized by Fourier transform attenuation total reflection infrared spectroscopy (ATR-FTIR), differential calorimetric scanning (DSC), thermogravimetric analysis (TG), tensile testing, and cross-link density testing. The modification of ADA exhibited positive effects on mechanical properties, the thermal stability of COL-CS membranes. The cross-linking degree between ADA and COL-CS membranes increased significantly with an increase in the oxidation degree. COL-CS-ADA films showed no cytotoxicity toward L929 fibroblasts and had good biocompatibility. The animal experiments showed that COL-CS-ADA film could promote wound healing.  相似文献   

12.
Composite membranes with polyvinyl alcohol (PVA),sulphonated poly ether ether ketone (SPEEK) and phosphotungstic acid (PWA) were prepared using solvent casting method.The proton conductivities of such membranes were found to be in the order of 10~(-3) S/cm in the fully hydrated condition at room temperature as measured by impedance spectroscopy.The crystalline properties were studied by X-ray diffraction analysis.The thermal properties were determined by TGA and DSC techniques.The tensile strength and pe...  相似文献   

13.
In this study, a series of membranes with different amino group densities were prepared to investigate the surface properties of the novel poly(γ-amino-ε-caprolactone-co-ε-caprolactone) (NPCL) copolymer synthesized by our laboratory. Meanwhile, the human mesenchymal stem cells' (hMSCs) behavior on those membranes was examined. The molecular characteristics of the NPCL copolymers were characterized by nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), and differential scanning calorimetry (DSC). Surface properties of membranes were characterized by water contact angle analysis, X-ray photoelectron spectroscopy analysis (XPS), and atomic force microscopy (AFM). It was found that the incorporation of amino groups to the poly(ε-caprolactone) (PCL) backbone resulted in an augmented wettability, a decreased crystallinity, and also an increased surface roughness on the NPCL membranes. In vitro cell experiments showed a significant enhancement in hMSCs' adhesion, proliferation, and osteogenic differentiation on NPCL membranes compared with virgin PCL membrane, and demonstrated that surface properties of membrane played an important role in tailoring cell behavior.  相似文献   

14.
Composite membranes based on Nafion (N115) loaded with furfuryl alcohol (FA) were prepared by in situ acid-catalyzed polymerization technique, with the aim to improve the ionic conductivity of Nafion membranes. The functionalization, thermal stability, electrical properties and mechanical strength of N115-PFA composites was analyzed by means of Fourier transform infrared (FT-IR) attenuated total reflection (ATR) spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), thermogravimetric analysis (TGA), electrical impedance spectroscopy, dynamic vapor sorption (DVS) and dynamic mechanical analyser (DMA). The FA loading in the resultant composites had a positive correlation with the water uptake (Wu), water vapor uptake (Wvu), ionic conductivity and thermo-mechanical stability. At low polyfurfuryl alcohol (PFA) loading, these membranes displayed higher Wu and improved ionic and electrical properties. Further, the thermo-mechanical stability also gradually increased with the PFA loading. All the composites showed a well-defined glass transition temperature in DMA, which shifted to higher temperature with repeated PFA loading. Overall, the results indicate that the developed composite membrane are promising for low temperature polymer electrolyte membrane (PEM) fuel cells.  相似文献   

15.
The surface and the solid/liquid interface of two polyamide membranes, one experimental (B0) and one commercial (NF45), have been characterized by X-ray photoelectronic spectroscopy (XPS), atomic force microscopy (AFM), and zeta potential, respectively. The surface roughness, determined by AFM data analysis, is different for the two membranes, and results show that the commercial NF45 membrane presents a much lower roughness than the experimental B0 membrane. XPS data indicate that the surface of membrane NF45 is similar to that of pure polyamide, while membrane B0 contains a considerable amount of impurities. The homogeneity in depth of both membranes was also studied by determining the composition profile at different analysis angles. Streaming potential along the membrane surface or tangential streaming potential (TSP) measurements with NaCl solutions at different concentrations were carried out with both membranes to determine the zeta potential and the electrokinetic surface charge density, and a correlation between membrane surface and interface parameters is made. Some differences in atomic concentrations of membrane surface elements and X-ray photoelectronic spectra of the samples used in TSP measurements and after a drying process at 90 degrees C for 24 h can be observed when they are compared with those for fresh membranes. Electrokinetic parameters for membrane NF45 (TSP, zeta potential, and surface electrokinetic charge density) obtained from three different series of measurements strongly decrease as a result of membrane use, but for membrane B0 they are practically independent of the number of measurements. This difference in the electrokinetic behavior of the two membranes has been related to the hydration process of the surface for each sample studied by XPS and AFM.  相似文献   

16.
This study presents a methodology for an in-depth characterization of six representative commercial nanofiltration membranes. Laboratory-made polyethersulfone membranes are included for reference. Besides the physical characterization [molecular weight cut-off (MWCO), surface charge, roughness and hydrophobicity], the membranes are also studied for their chemical composition [attenuated total reflectance Fourier spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS)] and porosity [positron annihilation spectroscopy (PAS)]. The chemical characterization indicates that all membranes are composed of at least two different layers. The presence of an additional third layer is proved and studied for membranes with a polyamide top layer. PAS experiments, in combination with FIB (focused ion beam) images, show that these membranes also have a thinner and a less porous skin layer (upper part of the top layer). In the skin layer, two different pore sizes are observed for all commercial membranes: a pore size of 1.25-1.55 angstroms as well as a pore size of 3.20-3.95 angstroms (both depending on the membrane type). Thus, the pore size distribution in nanofiltration membranes is bimodal, in contrast to the generally accepted log-normal distribution. Although the pore sizes are rather similar for all commercial membranes, their pore volume fraction and hence their porosity differ significantly.  相似文献   

17.
Freestanding, ion conducting, membranes were synthesized by incorporating triazole-containing tetracyclosiloxanes into a polyethylene glycol-tetraethyl orthosilicate (PEG-TEOS) based sol-gel matrix. These membranes show comparable or higher proton conductivities than their linear, liquid, polysiloxane analogs and fall within an order of magnitude of the target ion mobilities for use in proton exchange membrane fuel cells (PEMFC's). The absence of any unbound PEG or cyclic siloxane was confirmed by proton nuclear magnetic resonance (1H-NMR), while the chemical structure and composition of the membranes was corroborated by Fourier transform infrared (FTIR) spectroscopy. Thermogravimetric analysis (TGA) indicated that the membranes are stable up to 180°C and differential scanning calorimetry (DSC) analysis showed complete suppression of PEG crystallization after incorporation of the triazole-functionalized cyclosiloxanes. An increase in the molecular weight of the PEG chains used to create the sol-gel matrix produced membranes with increased flexibility and higher proton conductivities at temperatures below 100 °C. Pulse field gradient echo (PFG) NMR studies showed an increase in the apparent diffusion coefficient of the sol-gel threaded cyclosiloxane motifs compared to the linear polysiloxanes, indicating a significant reduction on the coupling between mechanical strength and ion transport capability.  相似文献   

18.
Poly (vinylidene fluoride) (PVDF) with "living" poly (acrylic acid) (PAAc) side chains (PVDF-g-PAAc) was prepared by reversible addition-fragmentation chain transfer (RAFT)-mediated graft copolymerization of acrylic acid (AAc) with the ozone-pretreated PVDF. The chemical composition and structure of the copolymers were characterized by elemental analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The copolymer could be readily cast into pH-sensitive microfiltration (MF) membranes with enriched living PAAc graft chains on the surface (including the pore surfaces) by phase inversion in an aqueous medium. The surface composition of the membranes was determined by X-ray photoelectron spectroscopy. The morphology of the membranes was characterized by scanning electron microscopy. The pore size distribution of the membranes was found to be much more uniform than that of the corresponding membranes cast from PVDF-g-PAAc prepared by the "conventional" free-radical graft copolymerization process. Most important of all, the MF membranes with surface-tethered PAAc macro chain transfer agents, or the living membrane surfaces, could be further functionalized via surface-initiated block copolymerization with N-isopropylacrylamide (NIPAAM) to obtain the PVDF-g-PAAc-b-PNIPAAM MF membranes, which exhibited both pH- and temperature-dependent permeability to aqueous media.  相似文献   

19.
The direct preparation of proton conducting poly(vinyl chloride) (PVC) graft copolymer electrolyte membranes using atom transfer radical polymerization (ATRP) is demonstrated. Here, direct initiation of the secondary chlorines of PVC facilitates grafting of a sulfonated monomer. A series of proton conducting graft copolymer electrolyte membranes, i.e. poly(vinyl chloride)‐g‐poly(styrene sulfonic acid) (PVC‐g‐PSSA) were prepared by ATRP using direct initiation of the secondary chlorines of PVC. The successful syntheses of graft copolymers were confirmed by 1H‐NMR and FT‐IR spectroscopy. The images of transmission electron microscopy (TEM) presented the well‐defined microphase‐separated structure of the graft copolymer electrolyte membranes. All the properties of ion exchange capacity (IEC), water uptake, and proton conductivity for the membranes continuously increased with increasing PSSA contents. The characterization of the membranes by thermal gravimetric analysis (TGA) also demonstrated their high thermal stability up to 200°C. The membranes were further crosslinked using UV irradiation after converting chlorine atoms to azide groups, as revealed by FT‐IR spectroscopy. After crosslinking, water uptake significantly decreased from 207% to 84% and the tensile strength increased from 45.2 to 71.5 MPa with a marginal change of proton conductivity from 0.093 to 0.083 S cm?1, which indicates that the crosslinked PVC‐g‐PSSA membranes are promising candidates for proton conducting materials for fuel cell applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Blend membranes comprising cellulose acetate and polysulfone (CA/PSf) were prepared through a solution casting method using a different concentration of polyvinylpyrrolidone (PVP) as the pore former. Fourier transform infrared spectroscopy (ATR-FTIR) was used to investigate structural properties of membranes. Membranes morphology and its thermal properties were characterized by scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The strength of membranes was studied by mechanical stability. The effect of PVP concentration on separation performance of the prepared membranes was studied. The separation performance of prepared membranes was tested by using an aqueous solution of cadmium metal complexed with humic acid. The results showed that an increase in the PVP concentration in the cast film from 0 to 3 wt% increased the thermal stability, water content (%), pure water flux, and solute rejection. SEM results showed that the pore size decreased but the number of pores increased on an increase in the PVP concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号