首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
王杰  陈鹏 《化学学报》2017,75(12):1173-1182
生物正交反应在化学生物学的研究中发挥着越来越重要的作用.传统的生物正交反应以新化学键生成的连接反应为主,其在实现生物分子的“标记”、“示踪”和“捕捉”等研究中发挥着重要作用.近年来,一类新兴的反应类型--以化学键断裂为基础的生物正交剪切反应逐渐发展起来,并在分子的“释放”、“激活”和“操控”等方面得到了越来越广泛的应用.本文首先重点介绍了生物正交剪切反应,总结了这些反应的特点、适用范围和已经实现的用途.随后通过具体的例子介绍了这些反应在化学生物学中的应用,包括小分子前药的激活、蛋白质功能的调控、细胞的工程化等.最后文章对生物正交剪切反应的发展趋势进行了展望.  相似文献   

2.
2022年诺贝尔化学奖授予了Carolyn R. Bertozzi、Morten Meldal和K. Barry Sharpless三位科学家,以表彰他们开创了点击化学和生物正交化学。点击化学源于对有机合成方法学的改进,提供了一种在温和条件下高效快速地偶联化学分子的新方法。生物正交化学的开发则起始于生命体系中糖质生物大分子的特异性标记和成像,发展出一类不干扰生命体系且不受生命体系干扰的连接反应。二者殊途同归、异曲同工,成为了在化学、生物医药和材料科学等领域中应用最为广泛的一类化学反应。本文从点击化学与生物正交化学开发中所涉及的化学基础概念出发,对这两种方法的前沿思想进行简要探讨。  相似文献   

3.
王鹏  刘欢  杨妲 《化学进展》2022,34(5):1076-1087
氢甲酰化串联反应是在氢甲酰化反应的基础上,与一个或多个不同类型的反应“一锅法”实现醛类化合物的后续定向转化,得到新的有机分子的合成方法。该反应的产物在日化工业、农业、医药中间体的生产中具有十分重要的用途。本文首先简述了近年来烯烃氢甲酰化串联反应制备高附加值化学品的重要性,随后重点介绍了几种常见的烯烃氢甲酰化串联反应:“异构化-氢甲酰化”串联反应、“氢甲酰化-缩醛化”串联反应、“氢甲酰化-氢化”串联反应和“氢甲酰化-(还原)胺化”串联反应等,以及其在设计新型(多功能)催化剂体系和高效合成目标产物方面的研究进展,最后总结了烯烃氢甲酰化串联反应存在的问题以及对未来发展趋势进行了展望。  相似文献   

4.
刘亚伟  张晓春  董坤  张锁江 《化学进展》2022,34(7):1509-1523
离子液体是可以替代传统溶剂实现高效、低碳、清洁、循环新过程新技术的新型溶剂,在完成“双碳”目标中具有重要的应用价值。同时,离子液体是一种典型的“软凝聚态物质(软物质)”,对它的认识和应用依赖于对其内部多尺度微观结构的研究,这需要以“凝聚态化学”的思想作为未来的研究方向,即对离子液体体系的组成、结构、性质、功能及它们之间的内在关系进行多层次的研究,进而实现对实际应用体系中传递过程和反应过程的调控。在本文中,我们以“凝聚态化学”的视角简要综述了对离子液体的研究。首先介绍了离子液体的化学结构和物理性质,指出理解离子液体性质的变化必须要研究其内部的结构。然后,我们介绍了离子液体从分子层面到纳微尺度的结构,包括离子对、氢键、氢键网络、团簇、界面结构和纳米限域结构。最后,我们对离子液体“凝聚态化学”研究的未来进行了展望。  相似文献   

5.
王志鹏  李娟  李宜明 《有机化学》2013,(9):1874-1883
作为化学生物学研究的重要方向,生物正交反应的发展与应用为生命科学研究提供了有力武器.利用生物正交反应,人们可以将合成分子与目标天然大分子在特定位点上实现特异性连接,进而达成诸如标记、定位、功能化、固定等一系列目标.生物模拟转氨反应及其衍生反应是一类特异性蛋白质N端修饰的生物正交反应,与天然蛋白侧链、C端的连接反应相互补充.由于该反应具有高效性、通用性、温和性及不需要引入突变或非天然氨基酸等优点,从发现以来已较为广泛地运用于蛋白质化学生物学的多个相关领域.在介绍其基本原理及反应优化的基础上,综述该类反应的发展及应用情况.  相似文献   

6.
荆西平 《化学进展》2020,32(8):1049-1059
“凝聚态化学”是化学学科一个新的发展领域,其基本思想是超越分子和理想晶体的界限,多层次地研究物质的组成、结构、性质、制备以及它们之间的关系。本文简要回顾了从固体物理到凝聚态物理的历史以及固体化学的发展历史,分析了固体化学的学科特点,指出固体化学的发展必然孕育着“凝聚态化学”的形成,同时指出,化学学科中的多个领域也都会将“凝聚态化学”作为自己的发展方向。建议了从固体化学向“凝聚态化学”发展的途径:完善固体化学学科的知识体系,拓展固体化学的知识范围,创造“凝聚态化学”的标志性成果。最后强调,与凝聚态物理学家密切合作,共建“凝聚态科学”大厦。  相似文献   

7.
“蛋黄蛋壳”结构纳米材料,具有易于调控的“蛋黄”、“蛋壳”和“空腔”结构,可视作“纳米反应器”,在催化、储能等领域表现出显著的应用潜力。尤其在电化学能源存储和转换方面,该结构纳米电极具有大的比表面积和独特的核壳结构,在充放电过程中可缓解电极的体积变化,提供快速的离子/电子输运通道,强化中间产物的吸附和提升转换反应效率等,能显著提高电极稳定性、倍率性能和循环性能,是一类较为理想的电极材料。本文针对“蛋黄蛋壳”结构纳米电极在锂/钠离子电池、锂硫电池等新兴二次电池领域的实际应用,总结了具有该结构纳米电极的设计与合成策略,包括:模板法、奥斯特瓦尔德熟化、电化学置换、克肯达尔效应等,评述了各种策略的优缺点以及电极材料的应用进展,最后对该类材料在锂/钠体系及锂硫电池二次电池方面的研究与应用前景进行了展望。  相似文献   

8.
潘福生  姚远  孙洁 《化学进展》2021,33(3):442-461
锂硫电池理论能量密度高达2600 Wh·kg-1,单质硫的理论容量可达1675 mAh·g-1,远高于商业化的锂离子电池正极材料,但多硫化锂的“穿梭效应”等问题对其性能影响严重。目前研究主要采用基于“阻挡”的物理限制和化学吸附策略将多硫化锂限制在正极侧。而基于“疏导”的催化转化策略则通过加快氧化还原反应动力学,在抑制“穿梭效应”的同时实现降低过电位、诱导Li2S均匀沉积等功能。本文综述了锂硫电池中的催化作用,基于是否产生氧化还原中间体将其分为吸附-转化机制和氧化还原介导机制两类;并介绍了相关的材料及常用的表征技术和研究方法。  相似文献   

9.
刘康  李斌  于吉攀  石伟群 《化学学报》2022,80(3):373-385
几十年来, 在基础有机化学和理论化学研究领域, 对具有非八隅体电子构型的碳物种的非常规成键特性的研究一直十分活跃. 在这方面, 最近已成功地分离出一种独特的零价碳卡本物种, 并将其定义为“碳双卡宾”或“弯曲的联烯”. 这是继自由基、卡宾、卡拜被合成后, 又一重要的活性中间体. 这种中性的双配位螯合的碳原子中心具有两对孤对电子, 具有很强的配位能力. 本综述简要介绍了卡本的发现历史、基本性质以及相关的配位化学行为; 同时介绍了其相关配合物在催化等方面的应用.  相似文献   

10.
张荡  王曦  王磊 《化学进展》2022,34(9):2035-2050
生物酶驱动微纳米马达是指利用天然酶催化分解过氧化氢、葡萄糖、尿素和甘油酯等燃料来提供动力的一种新型微纳米机器。生物酶驱动的微纳米马达具有良好的生物相容性,能够在原位利用生物燃料实现自主靶向运动,无需外加原料,这使得生物酶驱动的微纳米马达在生物医学领域展现出巨大的发展潜力与前景。目前,生物酶驱动的微纳米马达在生物医学领域的应用得到众多科学家的关注,但是时至今日,还没有一篇及时、全面、着重地讨论生物酶驱动微纳米马达在生物医学领域应用的综述文章。基于本课题组的研究经验以及目前该领域的发展情况,本文着重讨论不同种类生物酶驱动微纳米马达在疾病诊疗等生物医学领域应用的最新进展,包括生物标志物的检测与诊断、成像显像剂、癌症和其他疾病的治疗等。最后,本文对该领域的发展与未来研究方向提出展望,为实现以“面向世界科技前沿、面向人民生命健康”为目标的“人类卫生健康共同体”提供新的思路和方向。  相似文献   

11.
The strain-promoted azide alkyne cycloaddition (SPAAC) is a powerful tool for forming covalent bonds between molecules even under physiological conditions, and therefore found broad application in fields ranging from biological chemistry and biomedical research to materials sciences. For many applications, knowledge about reaction kinetics of these ligations is of utmost importance. Kinetics are commonly assessed and studied by NMR measurements. However, these experiments are limited in terms of temperature and restricted to deuterated solvents. By using an inline ATR-IR probe we show that the cycloaddition of azides and alkynes can be monitored in aqueous and even complex biological fluids enabling the investigation of reaction kinetics in various solvents and even human blood plasma under controlled conditions in low reaction volumes.  相似文献   

12.
The pretargeting strategy has recently emerged in order to overcome the limitations of direct targeting, mainly in the field of radioimmunotherapy (RIT). This strategy is directly dependent on chemical reactions, namely bioorthogonal reactions, which have been developed for their ability to occur under physiological conditions. The Staudinger ligation, the copper catalyzed azide-alkyne cycloaddition (CuAAC) and the strain-promoted [3 + 2] azide–alkyne cycloaddition (SPAAC) were the first bioorthogonal reactions introduced in the literature. However, due to their incomplete biocompatibility and slow kinetics, the inverse-electron demand Diels-Alder (IEDDA) reaction was advanced in 2008 by Blackman et al. as an optimal bioorthogonal reaction. The IEDDA is the fastest bioorthogonal reaction known so far. Its biocompatibility and ideal kinetics are very appealing for pretargeting applications. The use of a trans-cyclooctene (TCO) and a tetrazine (Tz) in the reaction encouraged researchers to study them deeply. It was found that both reagents are sensitive to acidic or basic conditions. Furthermore, TCO is photosensitive and can be isomerized to its cis-conformation via a radical catalyzed reaction. Unfortunately, the cis-conformer is significantly less reactive toward tetrazine than the trans-conformation. Therefore, extensive research has been carried out to optimize both click reagents and to employ the IEDDA bioorthogonal reaction in biomedical applications.  相似文献   

13.
Tetrazine‐ and sydnone‐based click reactions have emerged as important bioconjugation strategies with fast kinetics and N2 or CO2 as the only byproduct. Mechanistic studies of these reactions have focused on the initial rate‐determining cycloaddition steps. The subsequent N2 or CO2 release from the bicyclic intermediates has been approached mainly through computational studies, which have predicted lifetimes of femtoseconds. In the present study, bioorthogonal cycloadditions involving N2 or CO2 extrusion have been examined experimentally at the single‐molecule level by using a protein nanoreactor. At the resolution of this approach, the reactions appeared to occur in a single step, which places an upper limit on the lifetimes of the intermediates of about 80 μs, which is consistent with the computational work.  相似文献   

14.
We report a lipid‐based strategy to visualize Golgi structure and dynamics at super‐resolution in live cells. The method is based on two novel reagents: a trans‐cyclooctene‐containing ceramide lipid (Cer‐TCO) and a highly reactive, tetrazine‐tagged near‐IR dye (SiR‐Tz). These reagents assemble via an extremely rapid “tetrazine‐click” reaction into Cer‐SiR, a highly photostable “vital dye” that enables prolonged live‐cell imaging of the Golgi apparatus by 3D confocal and STED microscopy. Cer‐SiR is nontoxic at concentrations as high as 2 μM and does not perturb the mobility of Golgi‐resident enzymes or the traffic of cargo from the endoplasmic reticulum through the Golgi and to the plasma membrane.  相似文献   

15.
A set of photo-switchable monopeptides derived from cis-β-dibenzodiazocine-l -alanine (cis-DBDAA) have been designed and synthesized, which are capable of photo-click reacting with diaryltetrazoles or diarylsydnones in a hydrophobic phospholipid bilayer environment. The DBDAA monopeptides include both a hydrophobic tail on C-terminal, providing high affinity toward lipid membrane, and a modularized functional moiety on N-terminal, enabling rapid optimization of the self-assembly strength to form multifunctional supramolecules. With the cis-DBDAA monopeptides photo-switched into trans-configuration, we were able to disrupt the supramolecular assembly through an efficient photo-click reaction across the lipid bilayer of liposomes. We reveal that the performance of the photo-click reactions between the monopeptides and photo-generated nitrile imine intermediates is significantly enhanced by enrichment of both reactants in the hydrophobic membrane lamel of liposomes. Enrichment of the DBDAA monopeptide in lipid phase serves as a convenient method to introduce bioorthogonal chemical handles on live cell membranes, which enables fluorescence labelling of single cell's membrane with high spatiotemporal resolution to facilitate the studies on cell membrane dynamics.  相似文献   

16.
The strain-promoted alkyne-azide cycloaddition (SPAAC) is the most commonly employed bioorthogonal reaction with applications in a broad range of fields. Over the years, several different cyclooctyne derivatives have been developed and investigated in regard to their reactivity in SPAAC reactions with azides. However, only a few studies examined the influence of structurally diverse azides on reaction kinetics. Herein, we report our investigations of the reactivity of primary, secondary, and tertiary azides with the cyclooctynes BCN and ADIBO applying experimental and computational methods. All azides show similar reaction rates with the sterically non-demanding cyclooctyne BCN. However, due to the increased steric demand of the dibenzocyclooctyne ADIBO, the reactivity of tertiary azides drops by several orders of magnitude in comparison to primary and secondary azides. We show that this chemoselective behavior of tertiary azides can be exploited to achieve semiorthogonal dual-labeling without the need for any catalyst using SPAAC exclusively.  相似文献   

17.
Peptide stapling is a method for designing macrocyclic alpha‐helical inhibitors of protein–protein interactions. However, obtaining a cell‐active inhibitor can require significant optimization. We report a novel stapling technique based on a double strain‐promoted azide–alkyne reaction, and exploit its biocompatibility to accelerate the discovery of cell‐active stapled peptides. As a proof of concept, MDM2‐binding peptides were stapled in parallel, directly in cell culture medium in 96‐well plates, and simultaneously evaluated in a p53 reporter assay. This in situ stapling/screening process gave an optimal candidate that showed improved proteolytic stability and nanomolar binding to MDM2 in subsequent biophysical assays. α‐Helicity was confirmed by a crystal structure of the MDM2‐peptide complex. This work introduces in situ stapling as a versatile biocompatible technique with many other potential high‐throughput biological applications.  相似文献   

18.
To better understand the range of cellular interactions of PtII‐based chemotherapeutics, robust and efficient methods to track and analyze Pt targets are needed. A powerful approach is to functionalize PtII compounds with alkyne or azide moieties for post‐treatment conjugation through the azide–alkyne cycloaddition (click) reaction. Herein, we report an alkyne‐appended cis‐diamine PtII compound, cis‐[Pt(2‐(5‐hexynyl)amido‐1,3‐propanediamine)Cl2] ( 1 ), the X‐ray crystal structure of which exhibits a combination of unusual radially distributed CH/π(C?C) interactions, Pt? Pt bonding, and NH:O/NH:Cl hydrogen bonds. In solution, 1 exhibits no Pt? alkyne interactions and binds readily to DNA. Subsequent click reactivity with nonfluorescent dansyl azide results in a 70‐fold fluorescence increase. This result demonstrates the potential for this new class of alkyne‐modified Pt compound for the comprehensive detection and isolation of Pt‐bound biomolecules.  相似文献   

19.
Transition metals have been successfully applied to catalyze non-natural chemical transformations within living cells, with the highly efficient labeling of subcellular components and the activation of prodrugs. In vivo applications, however, have been scarce, with a need for the specific cellular targeting of the active transition metals. Here, we show the design and application of cancer-targeting palladium catalysts, with their specific uptake in brain cancer (glioblastoma) cells, while maintaining their catalytic activity. In these cells, for the first time, two different anticancer agents were synthesized simultaneously intracellularly, by two totally different mechanisms (in situ synthesis and decaging), enhancing the therapeutic effect of the drugs. Tumor specificity of the catalysts together with their ability to perform simultaneous multiple bioorthogonal transformations will empower the application of in vivo transition metals for drug activation strategies.  相似文献   

20.
We report a site‐selective cysteine–cyclooctyne conjugation reaction between a seven‐residue peptide tag (DBCO‐tag, Leu‐Cys‐Tyr‐Pro‐Trp‐Val‐Tyr) at the N or C terminus of a peptide or protein and various aza‐dibenzocyclooctyne (DBCO) reagents. Compared to a cysteine peptide control, the DBCO‐tag increases the rate of the thiol–yne reaction 220‐fold, thereby enabling selective conjugation of DBCO‐tag to DBCO‐linked fluorescent probes, affinity tags, and cytotoxic drug molecules. Fusion of DBCO‐tag with the protein of interest enables regioselective cysteine modification on proteins that contain multiple endogenous cysteines; these examples include green fluorescent protein and the antibody trastuzumab. This study demonstrates that short peptide tags can aid in accelerating bond‐forming reactions that are often slow to non‐existent in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号