首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly efficient reactions that enable the assembly of molecules into complex structures have driven extensive progress in synthetic chemistry. In particular, reactions that occur under mild conditions and in benign solvents, while producing no by-products and rapidly reach completion are attracting significant attention. Amongst these, the strain-promoted azide–alkyne cycloaddition, involving various cyclooctyne derivatives reacting with azide-bearing molecules, has gained extensive popularity in organic synthesis and bioorthogonal chemistry. This reaction has also recently gained momentum in polymer chemistry, where it has been used to decorate, link, crosslink, and even prepare polymer chains. This survey highlights key achievements in the use of this reaction to produce a variety of polymeric constructs for disparate applications.  相似文献   

2.
The pretargeting strategy has recently emerged in order to overcome the limitations of direct targeting, mainly in the field of radioimmunotherapy (RIT). This strategy is directly dependent on chemical reactions, namely bioorthogonal reactions, which have been developed for their ability to occur under physiological conditions. The Staudinger ligation, the copper catalyzed azide-alkyne cycloaddition (CuAAC) and the strain-promoted [3 + 2] azide–alkyne cycloaddition (SPAAC) were the first bioorthogonal reactions introduced in the literature. However, due to their incomplete biocompatibility and slow kinetics, the inverse-electron demand Diels-Alder (IEDDA) reaction was advanced in 2008 by Blackman et al. as an optimal bioorthogonal reaction. The IEDDA is the fastest bioorthogonal reaction known so far. Its biocompatibility and ideal kinetics are very appealing for pretargeting applications. The use of a trans-cyclooctene (TCO) and a tetrazine (Tz) in the reaction encouraged researchers to study them deeply. It was found that both reagents are sensitive to acidic or basic conditions. Furthermore, TCO is photosensitive and can be isomerized to its cis-conformation via a radical catalyzed reaction. Unfortunately, the cis-conformer is significantly less reactive toward tetrazine than the trans-conformation. Therefore, extensive research has been carried out to optimize both click reagents and to employ the IEDDA bioorthogonal reaction in biomedical applications.  相似文献   

3.
A facile, catalyst-free synthesis of a norbornylated cellulosic material (NC) with a high degree of substitution (2.9) is presented by direct reaction of trimethylsilyl cellulose with norbornene acid chloride. The resulting NC is highly soluble in organic solvents and its reactive double bonds were exploited for the copper-free inverse-electron demand Diels–Alder (iEDDA) “click” reaction with 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine. Reaction kinetics are comparable to the well-known Huisgen type 1,3-dipolar cycloaddition of azide with alkynes, while avoiding toxic catalysts.  相似文献   

4.
An iridium‐catalyzed azide–alkyne cycloaddition reaction (IrAAC) of electron‐rich internal alkynes is described. It is the first efficient intermolecular AAC of internal thioalkynes. The reaction exhibits remarkable features, such as high efficiency and regioselectivity, mild reaction conditions, easy operation, and excellent compatibility with air and a broad spectrum of organic and aqueous solvents. It complements the well‐known CuAAC and RuAAC click reactions.  相似文献   

5.
The reactivity of an exemplary ruthenium(II)–azido complex towards non‐activated, electron‐deficient, and towards strain‐activated alkynes at room temperature and low millimolar azide and alkyne concentrations has been investigated. Non‐activated terminal and internal alkynes failed to react under such conditions, even under copper(I) catalysis conditions. In contrast, as expected, rapid cycloaddition was observed with electron‐deficient dimethyl acetylenedicarboxylate (DMAD) as the dipolarophile. Since DMAD and related propargylic esters are excellent Michael acceptors and thus unsuitable for biological applications, we investigated the reactivity of the azido complex towards cycloaddition with derivatives of cyclooctyne (OCT), bicyclo[6.1.0]non‐4‐yne (BCN), and azadibenzocyclooctyne (ADIBO). While no reaction could be observed in the case of the less strained cyclooctyne OCT, the highly strained cyclooctynes BCN and ADIBO readily reacted with the azido complex, providing the corresponding stable triazolato complexes, which were amenable to purification by conventional silica gel column chromatography. An X‐ray crystal structure of an ADIBO cycloadduct was obtained and verified that the formed 1,2,3‐triazolato ligand coordinates the metal center through the central N2 atom. Importantly, the determined second‐order rate constant for the ADIBO cycloaddition with the azido complex (k2=6.9 × 10?2 M ?1 s?1) is comparable to the rate determined for the ADIBO cycloaddition with organic benzyl azide (k2=4.0 × 10?1 M ?1 s?1). Our results demonstrate that it is possible to transfer the concept of strain‐promoted azide–alkyne cycloaddition (SPAAC) from purely organic azides to metal‐coordinated azido ligands. The favorable reaction kinetics for the ADIBO‐azido‐ligand cycloaddition and the well‐proven bioorthogonality of strain‐activated alkynes should pave the way for applications in living biological systems.  相似文献   

6.
In this article, the role of noncovalent interactions (NCI) on four types of cycloaddition reactions in different solvents was investigated by employing quantum chemistry calculations. For this purpose, explicit and implicit solvation models were applied in the experimental conditions of temperature and pressure. NCI analysis indicates that van der Waals (vdW) interactions, as a part of NCI, change the stability and Gibbs energy of the transition states (TSs), which in turn affects the rate of the reaction. On the basis of NCI analysis, a partial covalent nature of the forming C C bonds at the TSs was confirmed. Energy analysis confirms that vdW interactions can be considered as the main part of the solute-solvent interactions in the cycloaddition reactions. Moreover, cycloaddition reactions of the polar reactants are faster in polar solvents, while nonpolar solvents induce a contrast effect on the rate of these reactions.  相似文献   

7.
Dry organic solvents are used for various organic reactions that employ moisture sensitive reagents. The processes to dry these solvents are hazardous and costly. Setting up reactions in an open atmosphere while using moisture sensitive reagents has little to no effect on the rate or yield of the reaction under mechanochemical conditions. We believe this is partly due to the gaseous nature of the water vapor in the air compared to the dissolved water and oxygen in solution.  相似文献   

8.
Click chemistry focuses on the development of highly selective reactions using simple precursors for the exquisite synthesis of molecules. Undisputedly, the CuI-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the most valuable examples of click chemistry, but it suffers from some limitations as it requires additional reducing agents and ligands as well as cytotoxic copper. Here, we demonstrate a novel strategy for the azide–alkyne cycloaddition reaction that involves a photoredox electron-transfer radical mechanism instead of the traditional metal-catalyzed coordination process. This newly developed photocatalyzed azide–alkyne cycloaddition reaction can be performed under mild conditions at room temperature in the presence of air and visible light and shows good functional group tolerance, excellent atom economy, high yields of up to 99 %, and absolute regioselectivity, affording a variety of 1,4-disubstituted 1,2,3-triazole derivatives, including bioactive molecules and pharmaceuticals. The use of a recyclable photocatalyst, solar energy, and water as solvent makes this photocatalytic system sustainable and environmentally friendly. Moreover, the azide–alkyne cycloaddition reaction could be photocatalyzed in the presence of a metal-free catalyst with excellent regioselectivity, which represents an important development for click chemistry and should find versatile applications in organic synthesis, chemical biology, and materials science.  相似文献   

9.
The purpose of this review is to summarize the importance of microwave (MW) irradiation as a kind of catalyst in organophosphorus chemistry. Slow or reluctant reactions, such as the Diels-Alder cycloaddition or an inverse-Wittig type reaction, may be performed efficiently under MW irradiation. The direct esterification of phosphinic and phosphonic acids, which is practically impossible on conventional heating, may be realized under MW conditions. Ionic liquid additives may promote further esterifications. The opposite reaction, the hydrolysis of P-esters, has also relevance among the MW-assisted transformations. A typical case is when the catalysts are substituted by MWs, which is exemplified by the reduction of phosphine oxides, and by the Kabachnik–Fields condensation affording α-aminophosphonic derivatives. Finally, the Hirao P–C coupling reaction may serve as an example, when the catalyst may be simplified under MW conditions. All of the examples discussed fulfill the expectations of green chemistry.  相似文献   

10.
Dynamic covalent bonds are extensively employed in dynamic combinatorial chemistry. The metathesis reaction of disulfide bonds is widely used, but requires catalysis or irradiation with ultraviolet (UV) light. It was found that diselenide bonds are dynamic covalent bonds and undergo dynamic exchange reactions under mild conditions for diselenide metathesis. This reaction is induced by irradiation with visible light and stops in the dark. The exchange is assumed to proceed through a radical mechanism, and experiments with 2,2,6,6‐tetramethylpiperidin‐1‐yloxyl (TEMPO) support this assumption. Furthermore, the reaction can be conducted in different solvents, including protic solvents. Diselenide metathesis can also be used to synthesize diselenide‐containing asymmetric block copolymers. This work thus entails the use of diselenide bonds as dynamic covalent bonds, the development of a dynamic exchange reaction under mild conditions, and an extension of selenium‐related dynamic chemistry.  相似文献   

11.
A series of 12‐ to 22‐membered macrocycles, with druglike functionality and properties, have been generated by using a simple and efficient copper‐catalyzed azide–acetylene cycloaddition reaction, conducted in flow in high‐temperature copper tubing, under environmentally friendly conditions. The triazole‐containing macrocycles have been generated in up to 90 % yield in a 5 min reaction, without resorting to the high‐dilution conditions typical of macrocyclization reactions. This approach represents a very efficient method for constructing this important class of molecules, in terms of yield, concentration, and environmental considerations.  相似文献   

12.
The formal [2+2] cycloaddition–retroelectrocyclization (CA–RE) reactions between tetracyanoethylene (TCNE) and strained, electron‐rich dibenzo‐fused cyclooctynes were studied. The effect of ring strain on the reaction kinetics was quantified, revealing that the rates of cycloaddition using strained, cyclic alkynes are up to 5500 times greater at 298 K than those of reactions using unstrained alkynes. Cyclobutene reaction intermediates, as well as buta‐1,3‐diene products, were isolated and their structures were studied crystallographically. Isolation of a rare example of a chiral buta‐1,3‐diene that is optically active and configurationally stable at room temperature is reported. Computational studies on the enantiomerization pathway of the buta‐1,3‐diene products showed that the eight‐membered ring inverts via a boat conformer in a ring‐flip mechanism. In agreement with computed values, experimentally measured activation barriers of racemization in these compounds were found to be up to 26 kcal mol?1.  相似文献   

13.
Two-step one-pot reaction conditions have been developed for synthesizing 1-substituted-1,2,3-triazoles. This transformation involves the base-catalyzed deprotection of trimethylsilylacetylene followed by Cu-catalyzed Huisgen 1,3-dipolar cycloaddition under aqueous reaction conditions. Utilization of potassium carbonate as the base and methanol as the alcoholic aqueous co-solvent resulted in optimal yields of the desired products. The reaction conditions were found to be successful for both alkyl and aryl azide reactants, including analogs with electron-donating and electron-withdrawing functionality. This procedure stands as a simple and regioselective means by which to prepare 1-substituted-1,2,3-triazole compounds directly from azide precursors.  相似文献   

14.
The concept of chelation‐assisted copper catalysis was employed for the development of new azides that display unprecedented reactivity in the copper(I)‐catalyzed azide–alkyne [3+2] cycloaddition (CuAAC) reaction. Azides that bear strong copper‐chelating moieties were synthesized; these functional groups allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. Efficient ligation occurred at low concentration and in complex media with only one equivalent of copper, which improves the biocompatibility of the CuAAC reaction. Furthermore, such a click reaction allowed the localization of a bioactive compound inside living cells by fluorescence measurements.  相似文献   

15.
In this paper, the mechanisms of the intermolecular [3+2] and [1+2] cycloaddition reactions of 1,1/1,3-dipolar π-delocalized singlet vinylcarbenes, which is obtained from cyclopropenone, with an electron-deficient C═O or C═C dipolarophile, to generate five-membered ring products are first disclosed by the density functional theory (DFT). Four reaction pathways, including two concerted [3+2] cycloaddition reaction pathways and two stepwise reaction pathways (an initial [1+2] cycloaddition and then a rearrangement from the [1+2] cycloadducts to the final [3+2] cycloadducts), are investigated at the B3LYP/6-31G(d,p) level of theory. The calculated results reveal that, in contrast to the concerted C═O [3+2] cycloaddition reaction pathway, which is 7.1 kcal/mol more energetically preferred compared with its stepwise reaction pathway, the C═C dipolarophile favors undergoing [1+2] cycloaddition rather than concerted [3+2] cycloaddition (difference of 5.3 kcal/mol). The lowest free energy barrier of the C═O concerted [3+2] cycloaddition reaction pathway shows that it predominates all other reaction pathways. This observation is consistent with the finding that the C═O [3 + 2] cycloadduct is the main product under experimental conditions. In addition, natural bond orbital second-order perturbation charge analyses are carried out to explain the preferred chemoselectivity of C═O to the C═C dipolarophile and the origins of cis-stereoselectivity for C═C [1+2] cycloaddition. Solvent effects are further considered at the B3LYP/6-31G(d,p) level in the solvents CH(3)CN, DMF, THF, CH(2)Cl(2), toluene, and benzene using the PCM model. The results indicate that the relative reaction trends and the main products are insensitive to the polarity of the reaction solvent.  相似文献   

16.
2-Methoxybuta-1,3-diene reacts under high pressure conditions in a one-pot domino (4+2)/(4+2)/(3+2) cycloaddition reaction with a dienophile, β-nitrostyrene and a dipolarophile to give tri, tetra and pentacyclic nitroso acetals. In this novel domino reaction up to six bonds and up to eight stereogenic centers are created in one step in good yield and good stereoselectivity.  相似文献   

17.
Alkylaluminum halides react with Brønsted acids to liberate an alkane and generate a new Lewis acid. Using these reagents, Lewis acid catalyzed reactions can be run under aprotic conditions, even when acidic protons are produced in the reaction. The use of these reagents for Lewis acid catalyzed ene, Diels-Alder and cycloaddition reactions and Claisen rearrangements is described. These reagents are also useful initiators for cation-olefin addition reactions. In some cases the alkyl groups react as nucleophiles. While this is often undesirable, addition of an alkyl group to carbenium ion intermediates provides novel classes of compounds.  相似文献   

18.
The strain-promoted alkyne-azide cycloaddition (SPAAC) is the most commonly employed bioorthogonal reaction with applications in a broad range of fields. Over the years, several different cyclooctyne derivatives have been developed and investigated in regard to their reactivity in SPAAC reactions with azides. However, only a few studies examined the influence of structurally diverse azides on reaction kinetics. Herein, we report our investigations of the reactivity of primary, secondary, and tertiary azides with the cyclooctynes BCN and ADIBO applying experimental and computational methods. All azides show similar reaction rates with the sterically non-demanding cyclooctyne BCN. However, due to the increased steric demand of the dibenzocyclooctyne ADIBO, the reactivity of tertiary azides drops by several orders of magnitude in comparison to primary and secondary azides. We show that this chemoselective behavior of tertiary azides can be exploited to achieve semiorthogonal dual-labeling without the need for any catalyst using SPAAC exclusively.  相似文献   

19.
Asano K  Matsubara S 《Organic letters》2010,12(21):4988-4991
Imidazole derivatives substituted by a normal alkyl group are shown to be efficient as a ligand for the copper(Ι)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. An alkyl chain on the imidazole ligands shows an efficient steric effect and benefits the reaction. Such functionalities of an alkyl chain allow a rapid CuAAC reaction of even a bulky alkyne, which has been difficult to perform under conventional conditions.  相似文献   

20.
The catalytic performance of triazolyl‐based molecular gels was investigated in the Huisgen 1,3‐dipolar cycloaddition of alkynes and azides. Low‐molecular‐weight gelators derived from l ‐valine were synthesized and functionalized with a triazole fragment. The resultant compounds formed gels either with or without copper, in a variety of solvents of different polarity. The gelators coordinated CuI and exhibited a high catalytic activity in the gel phase for the model reaction between phenylacetylene and benzylazide. Additionally, the gels were able to participate in autocatalytic synthesis and the influence of small structural changes on their performance was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号