首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been found that gold nanoparticles (nano-Au) enhance the chemiluminescence (CL) of the luminol–hydrogen peroxide system and that estrogens inhibit these CL signals in alkaline solution. CL spectra, UV–visible spectra, X-ray photoelectron spectra (XPS), and transmission electron microscopy (TEM) were used to investigate the mechanism of the CL enhancement. On the basis of the inhibition, a flow-injection CL method has been established for determination of three natural estrogens. Under the optimized conditions, the linear range for determination of the estrogens was 0.07 to 7.0 μmol L−1 for estrone, 0.04 to 10 μmol L−1 for estradiol, and 0.1 to 10 μmol L−1 for estriol. The detection limits were 3.2 nmol L−1 for estrone, 7.7 nmol L−1 for estradiol, and 49 nmol L−1 for estriol, with RSD of 2.9, 2.6, and 1.8%, respectively. This method has been used for analysis of estrogens in commercial tablets and in urine samples from pregnant women.  相似文献   

2.
A simple and fast flow injection fluorescence quenching method for the determination of iron in water has been developed. Fluorimetric determination is based on the measurement of the quenching effect of iron on salicylic acid fluorescence. An emission peak of salicylic acid in aqueous solution occurs at 409 nm with excitation at 299 nm. The carrier solution used was 2 × 10−6 mol L−1 salicylic acid in 0.1 mol L−1 NH4+/NH3 buffer solution at pH 8.5. Linear calibration was obtained for 5–100 μg L−1 iron(III) and the relative standard deviation was 1.25 % (n = 5) for a 20 μL injection volume iron(III). The limit of detection was 0.3 μg L−1 and the sampling rate was 60 h−1. The effect of interferences from various metals and anions commonly present in water was also studied. The method was successfully applied to the determination of low levels of iron in real samples (river, sea, and spring waters).  相似文献   

3.
Microwave-assisted thermal desorption (MAD) coupled to headspace solid-phase microextraction (HS-SPME) has been studied for in-situ, one-step, sample preparation for PAHs collected on XAD-2 adsorbent, before gas chromatography with mass spectrometric detection. The PAHs on XAD-2 were desorbed into the extraction solution, evaporated into the headspace by use of microwave irradiation, and absorbed directly on a solid-phase microextraction fiber in the headspace. After desorption from the SPME fiber in the hot GC injection port, PAHs were analyzed by GC–MS. Conditions affecting extraction efficiency, for example extraction solution, addition of salt, stirring speed, SPME fiber coating, sampling temperature, microwave power and irradiation time, and desorption conditions were investigated. Experimental results indicated that extraction of 275 mg XAD-2, containing 10–200 ng PAHs, with 10-mL ethylene glycol–1 mol L−1 NaCl solution, 7:3, by irradiation with 120 W for 40 min (the same as the extraction time), and collection with a PDMS–DVB fiber at 35 °C, resulted in the best extraction efficiency. Recovery was more than 80% and RSD was less than 14%. Optimum desorption was achieved by heating at 290 °C for 5 min. Detection limits varied from 0.02 to 1.0 ng for different PAHs. A real sample was obtained by using XAD-2 to collect smoke from indoor burning of joss sticks. The amounts of PAHs measured varied from 0.795 to 2.53 ng. The method is a simple and rapid procedure for determination of PAHs on XAD-2 absorbent, and is free from toxic organic solvents.  相似文献   

4.
A new electroactive label has been used to monitor immunoassays in the determination of human serum albumin (HSA) using glassy-carbon electrodes as supports for the immunological reactions. The label was a gold(I) complex, sodium aurothiomalate, which was bound to rabbit IgG anti-human serum albumin (anti-HSA-Au). The HSA was adsorbed on the electrode surface and the immunological reaction with gold-labelled anti-HSA was then performed for one hour by non-competitive or competitive procedures. The gold(I) bound to the anti-HSA was electrodeposited in 0.1 mol L−1 HCl at −1.00 V for 5 min then oxidised in 0.1 mol L−1 H2SO4 solution at +1.40 V for 1 min. Silver electrodeposition at −0.14 V for 1 min followed by anodic stripping voltammetry were then performed in aqueous 1.0 mol L−1 NH3–2.0×10−4 mol L−1 AgNO3. For both non-competitive and competitive formats, calibration plots in the ranges 5.0×10−10 to 1.0×10−8 mol L−1 and 1.0×10−10 to 1.0×10−9 mol L−1 HSA, respectively, with estimated detection limits of 1.5×10−10 mol L−1 (10 ng mL−1) and 1.0×10−10 mol L−1 (7 ng mL−1), respectively, were obtained. Levels of HSA in two healthy volunteer urine samples were also evaluated, using both immunoassay formats.  相似文献   

5.
Phenolic acids and derivatives of quercetin in Indian (amla) and European gooseberry were determined by high-performance liquid chromatography with diode array detector. The calibration curves were constructed using phenolic compounds standards (the coefficient of determination (R 2) was 0.9990–0.9997 for phenolic acids and 0.9989–0.9994 for flavonols, respectively). The lowest detection limit was 0.28 mg L−1 and 0.35 mg L−1 for hyperoside and gallic acid, respectively, whereas the highest was 1.80 mg L−1 and 7.98 mg L−1 for quercetin and chlorogenic acid, respectively. The quantification limits calculated were 0.85–24.04 mg L−1 for hyperoside and chlorogenic acid, respectively. The predominant phenolic acid in amla and gooseberry is gallic acid: (5.37 ± 0.04) mg per 100 g of dry mass (d.m.) and (3.21 ± 0.03) mg per 100 g of d.m., respectively. The next one was caffeic acid, 0.65–1.22 mg per 100 g of d.m., followed by p-coumaric acid, 0.84–1.17 mg per 100 g of d.m. Out of the flavonols, rutin is predominant: (3.11 ± 0.13) mg per 100 g of d.m. and (2.12 ± 0.03) mg per 100 g of d.m., respectively. Anti-oxidant activity was also determined.  相似文献   

6.
A direct competitive enzyme-linked immunosorbent assay (ELISA) based on a monoclonal antibody has been developed and optimized for detection of aflatoxin B1 (AFB1), and an ELISA kit has been designed. This immunoassay was highly specific, sensitive, rapid, simple, and suitable for aflatoxin monitoring. AFB1 concentrations determinable by ELISA ranged from 0.1 to 10 μg L−1. The IC50 value was 0.62 μg L−1. Recovery from spiked rice samples averaged between 94 and 113%. The effect of different reagents on the stability of HRP–AFB1 conjugate solution was studied. The performance of a stabilized enzyme tracer in ELISA was determined and compared with that of a freshly prepared control solution of HRP–AFB1 conjugate. The results showed that stabilizing media containing 0.02% BSA, 0.1% Kathon CG, and 0.05 mol L−1 calcium chloride in 0.05 mol L−1 Tris-HCl buffer (pH 7.2) maintained the activity of HRP–AFB1 at a dilution of 1:1000 for a period of at least 12 months at room temperature whereas the reference conjugate solution without the additives lost its activity within a few days. Several additives were tested for their stabilizing effect on a monoclonal antibody (MAb) immobilized on the surface of polystyrene microtitre plates. It was shown that immobilized MAb, treated with post-coating solutions containing PVA, BSA, and combinations of these substances with trehalose, retained its activity for at least 4 months at 4°C, whereas the untreated MAb-coated plate lost its activity within 2 days.  相似文献   

7.
Speciation analysis of Sb(III) and Sb(V) in a soil sample was performed through extraction and on-line isotope dilution concentration determination after a chromatographic separation. The total Sb concentration found in a through traffic contaminated soil sample was (4.17 μg g−1, 0.3 μg g−1 SD, n=6). It was determined using ICP-MS after soil digestion using the sodium peroxide sintering method. The optimized extraction procedure for speciation analysis was carried out using 100 mmol L−1 citric acid at pH 2.08 by applying an ultrasonic bath for 45 min at room temperature. The effects of citric acid concentration (0–500 mmol L−1), pH (1–6), and temperature (30–60°C) on inorganic antimony species distribution in the examined sample were studied and optimized. The separation of Sb(III) and Sb(V) was achieved using an anion exchange column (PRP-X100) and 10 mmol L−1 EDTA and 1 mmol L−1 phthalic acid at pH 4.5 as a mobile phase. The eluent from the HPLC was mixed with an enriched (94.2%) 123Sb spike solution that was pumped by a peristaltic pump with a constant flow rate (0.5 mL min−1) in a three-way valve. The blend passed directly to the Conikal nebulizer of the ICP-MS. By using the above extraction procedure and methodology, 43.2% Sb(V) (2.9% RSD, n=3) and 6.0% Sb(III) (1.3% RSD, n=3) of total Sb found in the sample could be detected. The detection limits achieved by the proposed method were 20 ng L−1 and 65 ng L−1 for Sb(V) and Sb(III), respectively. The precision, evaluated by using RSD with 100 ng L−1 calibration solutions, was 2.7% and 3.2% (n=6) for Sb(V) and Sb(III), respectively, in aqueous solutions.  相似文献   

8.
Tetrazepam dissolved in the Britton-Robinson universal buffer of various pH values (2.5–11.5) containing 10 vol. % of ethanol was reduced at the mercury electrode in a single 2-electron irreversible step due to reduction of the 4,5 C=N double bond of the seven-membered ring. Differential pulse polarography (DPP) and adsorptive cathodic stripping voltammetry (AdCSV) techniques (Linear sweep LS, differential pulse DP and square-wave SW modes) for quantification of tetrazepam in bulk form and in myolastan tablets are presented. Moreover, the described linear sweep, differential pulse, and square-wave adsorptive cathodic stripping voltammetry was successfully applied in quantification of tetrazepam in spiked human serum without any prior extraction of the drug. The obtained results showed an increased sensitivity of the described electro-analytical procedures for the quantification of tetrazepam in the following order DPP, DP-AdCSV, LS-AdCSV, and SW-AdCSV, since the observed limits of tetrazepam quantitation by these electroanalytical techniques were 5 × 10−6 mol L−1, 3 × 10−7 mol L−1, 1 × 10−8 mol L−1, and 3 × 10−9 mol L−1, respectively.  相似文献   

9.
A highly sensitive high-performance liquid chromatographic method with fluorescence detection has been developed for determination of vitamin B1. Vitamin B1 was converted into a fluorescent compound by treatment with hydrogen peroxide–horseradish peroxidase and the derivative was subsequently analyzed by HPLC on a Waters Spherisorb ODS2 column (250 mm×4.6 mm ID, 5 μm) with 40:60 methanol–pH 8.5 acetate buffer solution as mobile phase and fluorescence detection at 440 nm (with excitation at 375 nm). The calibration graph was linear from 5.00×10−10 mol L−1 to 5.00×10−7 mol L−1 for vitamin B1 with a correlation coefficient of 0.9991 (n=9). The detection limit was 1.0×10−10 mol L−1. The method was successfully used for determination of vitamin B1 at pg mL−1 levels in microalgal fermentation media and seawater after solid-phase extraction. Recovery was from 89 to 110% and the relative standard deviation was in the range 1.1 to 4.3%.  相似文献   

10.
Summary A capillary electrophoretic method for the determination of Cu(II) and Co(III) chelates with ethylenediamine in electroless copper plating baths has been developed. The influence of carrier electrolyte parameters such as nature of counter-ion and pH were studied and discussed. The optimised separations were carried out in a fused silica capillary (57 cm × 75 μm I.D.) filled with an ethylenediamine sulfate electrolyte (20 mol L−1 ethylendiamine, pH7.0 with H2SO4; applied voltage, +25 kV) using direct UV detection at 214 nm. The detection limits for a signalto-noise ratio of 3 and 10s hydrodynamic injection were 5×10−6 mol L−1 for Cu(II) and 1×10−6 mol L−1 for Co(III). The relative standard deviations of the peak areas for Cu(II) and Co(III) were found to be 1.5% and 2.4%, respectively, with five consecutive injections of standard solution containing 5×10−5 mol L−1 of each metal ion. Application of the method to the speciation of Cu(II) and Co(III) complexes in copper plating bath samples is also demonstrated.  相似文献   

11.
The simultaneous determination of three isomers of phenylenediamines (o, m, and p-phenylenediamine) and two isomers of dihydroxybenzenes (catechol and resorcinol) in hair dyes was performed by capillary zone electrophoresis coupled with amperometric detection (CZE–AD). The effects of working electrode potential, pH and concentration of running buffer, separation voltage, and injection time on CZE–AD were investigated. Under the optimum conditions the five analytes could be perfectly separated in 0.30 mol L−1 borate–0.40 mol L−1 phosphate buffer (pH 5.8) within 15 min. A 300 μm diameter platinum electrode had good responses at +0.85 V (versus SCE) for the five analytes. Their linear ranges were from 1.0 × 10−6 to 1.0 × 10−4 mol L−1 and the detection limits were as low as 10−7 mol L−1 (S/N = 3). This working electrode was successfully used to analyze eight kinds of hair dye sample with recoveries in the range 91.0–108.0% and RSDs less than 5.0%. These results demonstrated that capillary zone electrophoresis coupled with electrochemical detection using a platinum working electrode as detector was convenient, highly sensitive, highly repeatable and could be used in the rapid determination of practical samples. Figure Electropherograms obtained from 10 mg mL−1 hair dye sample solutions at a platinum working electrode under optimum CZE–AD conditions: (a) natural black (I), (b) golden: (1) p-phenylenediamine, (2) m-phenylenediamine, (3) o-phenylenediamine, (4) resorcinol, and (5) catechol  相似文献   

12.
This work describes the application of an ordinary pyrolitic graphite electrode modified by metallophthalocyanine allied to square wave voltammetry for the study of the electrochemical behavior of the herbicide paraquat and the development of a method for its analytical determination in natural water samples. Preliminary experiments indicated that the best responses, considering the intensities of the current and voltammetric profile for the paraquat reduction process, were obtained when the electrode modified by cobalt phthalocyanine was employed, which had a better catalytic activity as a result of this modification compared with that for an unmodified electrode and electrodes modified by iron, manganese and the acid form of the phthalocyanines. Studies of the concentration of cobalt phthalocyanine and the adsorption time showed that 1.0 × 10−4 mol L−1 cobalt phthalocyanine with an adsorption time of 10 min was sufficient to obtain reliability and stability of modification for employment in the development of the electroanalytical procedure for paraquat determination in natural water samples. The variation in pH of a 0.10 mol L−1 Britton–Robinson buffer solution and the square wave parameters indicated that the best conditions to reduce paraquat were pH 7.0, a frequency of 100 s−1, a scan increment of 2 mV and a square wave amplitude of 50 mV. Under such conditions, the variation of paraquat concentrations from 5.00 × 10−7 to 2.91 × 10−5 mol L−1 showed a linear relation, with detection and quantification limits of 26.53 and 88.23 μg L−1; those values were lower than the maximum limits for drinking water permitted by the Brazilian Environmental Council (100 μg L−1), indicating that the method could be employed to analyze paraquat in drinking water samples.  相似文献   

13.
High performance liquid chromatography coupled with microdialysis sampling and electrochemical detection (HPLC–ECD) has been used to determine dopamine (DA). In the HPLC–ECD a multi-wall carbon nanotube electrode chemically modified with carboxyl groups (MWNT-COOH CME) was used as the working electrode for determination of DA. The results indicated that the MWNT-COOH CME enabled efficient electrocatalytic oxidation of DA with relatively high sensitivity and stability and long life. Peak currents for dopamine were linearly dependent on concentration in the range 5.0×10−9 to 5.0×10−5 mol L−1 and the calculated detection limit (S/N=3) was 2.5×10−9 mol L−1. The method had been successfully used to measure dopamine in rat striatal microdialysate. To study the physiological effect of nitric oxide (NO) on striatal release of DA, 0.5 mmol L−1 sodium nitroprusside (SNP) was a continuously perfused into rat striatum. This resulted in a 46% increase in DA basal level.  相似文献   

14.
There is an increasing need to assess the harmful effects of heavy-metal-ion pollution on the environment. The ability to detect and measure toxic contaminants on site using simple, cost effective, and field-portable sensors is an important aspect of environmental protection and facilitating rapid decision making. A screen-printed gold sensor in a three-electrode configuration has been developed for analysis of lead(II) by square-wave stripping voltammetry (SWSV). The working electrode was fabricated with gold ink deposited by use of thick-film technology. Conditions affecting the lead stripping response were characterised and optimized. Experimental data indicated that chloride ions are important in lead deposition and subsequent analysis with this type of sensor. A linear concentration range of 10–50 μg L−1 and 25–300 μg L−1 with detection limits of 2 μg L−1 and 5.8 μg L−1 were obtained for lead(II) for measurement times of four and two minutes, respectively. The electrodes can be reused up to 20 times after cleaning with 0.5 mol L−1 sulfuric acid. Interference of other metals with the response to lead were also examined to optimize the sensor response for analysis of environmental samples. The analytical utility of the sensor was demonstrated by applying the system to a variety of wastewater and soil sample extracts from polluted sites. The results are sufficient evidence of the feasibility of using these screen-printed gold electrodes for the determination of lead(II) in wastewater and soil extracts. For comparison purposes a mercury-film electrode and ICP–MS were used for validation.  相似文献   

15.
In the presence of carbonate and uranine, the chemiluminescent intensity from the reaction of luminol with hydrogen peroxide was dramatically enhanced in a basic medium. Based on this fact and coupled with the technique of flow-injection analysis, a highly sensitive method was developed for the determination of carbonate with a wide linear range. The method provided the determination of carbonate with a wide linear range of 1.0 × 10−10–5.0 × 10−6 mol L−1 and a low detection limit (S/N = 3) of carbonate of 1.2 × 10−11 mol L−1. The average relative standard deviation for 1.0 × 10−9–9.0 × 10−7 mol L−1 of carbonate was 3.7% (n = 11). Combined with the wet oxidation of potassium persulfate, the method was applied to the simultaneous determination of total inorganic carbon (TIC) and total organic carbon (TOC) in water. The linear ranges for TIC and TOC were 1.2 × 10−6–6.0 × 10−2 mg L−1 and 0.08–30 mg L−1 carbon, respectively. Recoveries of 97.4–106.4% for TIC and 96.0–98.5% for TOC were obtained by adding 5 or 50 mg L−1 of carbon to the water samples. The relative standard deviations (RSDs) were 2.6–4.8% for TIC and 4.6–6.6% for TOC (n = 5). The mechanism of the chemiluminescent reaction was also explored and a reasonable explanation about chemical energy transfer from luminol to uranine was proposed. Figure Chemiluminescence profiles in batch system. 1, Injection of 100 μL of K2CO3 into 1.0 mL luminol-1.0 mL H2O2 solution; 2-3 and 4-5, Injection in sequence of 100 μL of K2CO3 and 100 μL of uranine into 1.0 ml luminol-1.0 mL H2O2 solution; Cluminol = 1.0 × 10−7 mol/L, CH2O2 = 1.0 × 10−5 mol/L, Curanine = 1.0 × 10−5 mol/L, CK2CO3 = 1.0 × 10−7 mol/L except for 4-5 where CK2CO3 = 1.0 × 10−4 mol/L  相似文献   

16.
A rapid, sensitive and environmentally friendly method for the analysis of 14 anilines in water samples by dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) prior to gas chromatography–mass spectrometry (GC-MS) was developed and optimized. In the proposed method, cyclohexane was used as the extraction solvent as its toxicity was much lower than that of the solvent usually used in dispersive liquid–liquid microextraction (DLLME). In the optimized conditions, the method exhibited good analytical performance. Based on a signal-to-noise ratio of 3, limits of detection for anilines were in the range of 0.07 to 0.29 μg L−1, and the linear range was 0.5–200 μg L−1 with regression coefficients (r 2) higher than 0.9977. It was efficient for qualitative and quantitative analysis of anilines in water samples. The relative standard deviations varied from 2.9 to 8.6 % depending on different compounds indicating good precision. Tap water and river water were selected for evaluating the application to real water samples. The relative recoveries of anilines for the two real samples spiked with 10 μg L−1 anilines were in the scope of 78.2–114.6 % and 77.3–115.6 %, respectively.  相似文献   

17.
This work presents a nano-Al2O3 solid phase extraction technique for the determination of ultra-trace amounts of inorganic selenium species in aqueous systems using ion chromatography inductively coupled plasma-mass spectrometry (IC-ICP-MS). In this experiment, the inorganic selenium species were successfully extracted on a nano-Al2O3 solid phase column and then quantitative eluted with a 100 mmol L−1 NaOH solution. Extraction conditions such as solvent identity, solvent concentration, solvent volume, solvent pH and salt addition were optimized. Under the optimum extraction conditions (elute solvent: 100 mmol L−1 NaOH, solvent volume: 4 mL, pH: 7.0), low detection limits (Se (IV): 6 ng L−1, Se (VI): 11 ng L−1; RSD<5.0%) and good linear range (0.5–100 ng mL−1, R2 > 0.999) were obtained for all of the analytes. Good spiked recoveries over the range of 80–98% were obtained by applying the proposed method on real environmental water samples. These results indicated that this method is very sensitive and reliable when monitoring trace levels of inorganic selenium species in aqueous samples.   相似文献   

18.
A rapid, accurate, and precise method is described for the determination of Pb in wine using continuous-flow hydride generation atomic fluorescence spectrometry (CF-HGAFS). Sample pretreatment consists of ten-fold dilution of wine followed by direct plumbane generation in the presence of 0.1 mol L−1 HCl and 1% m/v K3[Fe(CN)6] with 1% m/v NaBH4 as reducing agent. An aqueous standard calibration curve is recommended for Pb quantification in wine sample. The method provides a limit of detection and a limit of quantification of 0.3 μg L−1 and 1 μg L−1, respectively. The relative standard deviation varies between 2–6% (within-run) and 4–11% (between-run) at 3–30 μg L−1 Pb levels in wine. Good agreement has been demonstrated between results obtained by CF-HGAFS and direct electrothermal atomic absorption spectrometry in analyses of red and white wines within the concentration range of 9.2–25.8 μg L−1 Pb.  相似文献   

19.
A new molecularly imprinted polymer (MIP)–chemiluminescence (CL) imaging detection approach towards chiral recognition of dansyl-phenylalanine (Phe) is presented. The polymer microspheres were synthesized using precipitation polymerization with dansyl-l-Phe as template. Polymer microspheres were immobilized in microtiter plates (96 wells) using poly(vinyl alcohol) (PVA) as glue. The analyte was selectively adsorbed on the MIP microspheres. After washing, the bound fraction was quantified based on peroxyoxalate chemiluminescence (PO-CL) analysis. In the presence of dansyl-Phe, bis(2,4,6-trichlorophenyl)oxalate (TCPO) reacted with hydrogen peroxide (H2O2) to emit chemiluminescence. The signal was detected and quantified with a highly sensitive cooled charge-coupled device (CCD). Influencing factors were investigated and optimized in detail. Control experiments using capillary electrophoresis showed that there was no significant difference between the proposed method and the control method at a confidence level of 95%. The method can perform 96 independent measurements simultaneously in 30 min and the limits of detection (LODs) for dansyl-l-Phe and dansyl-d-Phe were 0.025 μmol L−1 and 0.075 μmol L−1 (3σ), respectively. The relative standard deviation (RSD) for 11 parallel measurements of dansyl-l-Phe (0.78 μmol L−1) was 8%. The results show that MIP-based CL imaging can become a useful analytical technology for quick chiral recognition.  相似文献   

20.
This paper describes the development and validation of a sequential injection (SI) anodic stripping voltammetry (ASV) method using the hanging mercury drop electrode for accumulation of the heavy metal cations Cu(II), Pb(II) and Cd(II). The method was applied to wastewater samples after proper acid digestion in open vessels to eliminate matrix effects. For a deposition time of 90 s at the flow rate of 10 μl s−1, the detection limits of the method were 0.06, 0.09 and 0.16 μmol L−1 for Cd, Pb and Cu, respectively. Under these conditions the linear dynamic range was between 0.20 and 9.0 μmol L−1 and the sampling frequency was 30 analyses per hour. The relative standard deviation of the method was 3%(n=7) at the concentration level of 2.0 μmol L−1. The accuracy of the method was evaluated by spiking the samples with known amounts of the metal cations, and by comparison with an independent analytical technique, the inductively coupled plasma atomic emission spectroscopy (ICP-AES). Average recoveries were around of 84%, and the results showed no evidence of systematic errors in comparison to the ICP-AES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号