首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The geometry, electronic structure, and catalytic properties of nitrogen‐ and phosphorus‐doped graphene (N‐/P‐graphene) are investigated by density functional theory calculations. The reaction between adsorbed O2 and CO molecules on N‐ and P‐graphene is comparably studied via Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms. The results indicate that a two‐step process can occur, namely, CO+O2→CO2+Oads and CO+Oads→CO2. The calculated energy barriers of the first step are 15.8 and 12.4 kcal mol?1 for N‐ and P‐graphene, respectively. The second step of the oxidation reaction on N‐graphene proceeds with an energy barrier of about 4 kcal mol?1. It is noteworthy that this reaction step was not observed on P‐graphene because of the strong binding of Oads species on the P atoms. Thus, it can be concluded that low‐cost N‐graphene can be used as a promising green catalyst for low‐temperature CO oxidation.  相似文献   

2.
The oxidation mechanisms of CO to CO2 on graphene‐supported Pt and Pt‐Al alloy clusters are elucidated by reactive dynamical simulations. The general mechanism evidenced is a Langmuir–Hinshelwood (LH) pathway in which O2 is adsorbed on the cluster prior to the CO oxidation. The adsorbed O2 dissociates into two atomic oxygen atoms thus promoting the CO oxidation. Auxiliary simulations on alloy clusters in which other metals (Al, Co, Cr, Cu, Fe, Ni) replace a Pt atom have pointed to the aluminum doped cluster as a special case. In the nanoalloy, the reaction mechanism for CO oxidation is still a LH pathway with an activation barrier sufficiently low to be overcome at room temperature, thus preserving the catalyst efficiency. This provides a generalizable strategy for the design of efficient, yet sustainable, Pt‐based catalysts at reduced cost.  相似文献   

3.
Catalytic oxidation at room temperature is recognized as the most promising method for formaldehyde (HCHO) removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. Herein, flower-like hierarchical Pt/NiAl-LDHs catalysts with different [Ni2+]/[Al3+] molar ratios were synthesized via hydrothermal method followed by NaBH4 reduction of Pt precursor at room temperature. The flower-like hierarchical Pt/NiAl-LDHs were composed of interlaced nanoplates and metallic Pt nanoparticles (NPs) approximately 3–4 nm in diameter were loaded on the surface of the Pt/NiAl-LDHs with high dispersion. The as-prepared Pt/NiAl21 nanocomposite was highly efficient in catalyzing oxidation of HCHO into CO2 at room temperature. The high activity of the hierarchical Pt/NiAl21 nanocomposite was maintained after seven recycle tests, suggesting the high stability of the catalyst. Based on in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) studies, a reaction mechanism was put forward about HCHO decomposition at room temperature. This work provides new insights into designing and fabricating high-performance catalysts for efficient indoor air purification.  相似文献   

4.
Using density functional theory calculations, the adsorption and catalytic decomposition of formic acid (HCOOH) over Si‐doped graphene are investigated. For the stable adsorption geometries of HCOOH over Si‐doped graphene, the electronic structure properties are analyzed by adsorption energy, density of states, and charge density difference. A comparison of the reaction pathways reveals that both dehydration and dehydrogenation of HCOOH can occur over Si‐doped graphene. The estimated reaction energies and the activation barriers suggest that for the dehydration of HCOOH on the Si‐doped graphene, the rate‐controlling step is H + OH → H2O reaction. For the dehydrogenation of HCOOH, the rate‐determining step is the breaking of the C? H bond of the HCOO group to form the CO2 molecule and the atomic H. Our results reveal that the low cost Si‐doped graphene can be used as an efficient nonmetal catalyst for O? H bond cleavage of HCOOH. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Based on density functional theory (DFT) calculations, the formation geometries, stability and catalytic properties of single-atom iron anchored on xN-doped graphene (xN-graphene-Fe, x=1, 2, 3) sheet are systemically investigated. It is found that the different kinds and numbers of gas reactants can effectively regulate the electronic structure and magnetic properties of the 3 N-graphene-Fe system. For NO and CO oxidation reactions, the coadsorption configurations of NO/O2 and CO/O2 molecules on a reactive substrate as the initial state are comparably analyzed. The NO oxidation reactions through the Langmuir–Hinshelwood (LH) and Eley-Rideal (ER) mechanisms have relatively smaller energy barriers than those of the CO oxidation processes. In comparison, the preadsorbed 2NO reacting with 2CO molecules (2NO+2CO→2CO2+N2) through ER reactions (<0.4 eV) are energetically more favorable processes. These results can provide beneficial references for theoretical studies on NO and CO oxidation and designing graphene-based catalyst for toxic gas removal.  相似文献   

6.
《中国化学快报》2023,34(3):107605
A series of α-MnO2 catalysts with various Mn valence states were treated by hydrogen reduction for different periods of time. Their catalytic capacity for formaldehyde (HCHO) oxidation was evaluated. The results indicated that hydrogen reduction dramatically improves the catalytic performance of α-MnO2 in HCHO oxidation. The α-MnO2 sample reduced by hydrogen for 2 h possessed superior activity and could completely oxidize 150 ppm HCHO to CO2 and H2O at 70 °C. Multiple characterization results illustrated that hydrogen reduction contributed to the production of more oxygen vacancies. The oxygen vacancies on the catalyst surface enhanced the adsorption, activation and mobility of O2 molecules, and thereby enhanced HCHO catalytic oxidation. This study provides novel insight into the design of outstanding MnOx catalysts for HCHO oxidation at low temperature.  相似文献   

7.
We have elucidated the mechanism of CO oxidation catalyzed by gold nanoparticles through first‐principle density‐functional theory (DFT) calculations. Calculations on selected model show that the low‐coordinated Au atoms of the Au29 nanoparticle carry slightly negative charges, which enhance the O2 binding energy compared with the corresponding bulk surfaces. Two reaction pathways of the CO oxidation were considered: the Eley–Rideal (ER) and Langmuir–Hinshelwood (LH). The overall LH reaction O2(ads) + CO(gas) → O2(ads) + CO(ads) → OOCO(ads) → O(ads) + CO2(gas) is calculated to be exothermic by 3.72 eV; the potential energies of the two transition states ( TSLH1 and TSLH2 ) are smaller than the reactants, indicating that no net activation energy is required for this process. The CO oxidation via ER reaction Au29 + O2(gas) + CO(gas) → Au29–O2(ads) + CO(gas) → Au29–CO3(ads) → Au29–O(ads) + CO2(gas) requires an overall activation barrier of 0.19 eV, and the formation of Au29–CO3(ads) intermediate possesses high exothermicity of 4.33 eV, indicating that this process may compete with the LH mechanism. Thereafter, a second CO molecule can react with the remaining O atom via the ER mechanism with a very small barrier (0.03 eV). Our calculations suggest that the CO oxidation catalyzed by the Au29 nanoparticle is likely to occur at or even below room temperature. To gain insights into high‐catalytic activity of the gold nanoparticles, the interaction nature between adsorbate and substrate is also analyzed by the detailed electronic analysis. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

8.
The direct methanol fuel cell (DMFC) is considered as a promising power source, because of its abundant fuel source, high energy density and environmental friendliness. Among DMFC anode materials, Pt and Pt group metals are considered to be the best electrocatalysts. The combination of Pt with some specific transition metal can reduce the cost and improve the tolerance toward CO poisoning of pure Pt catalysts. In this paper, the geometric stabilities of PtFe/PdFe atoms anchored in graphene sheet and catalytic CO oxidation properties were investigated using the density functional theory method. The results show that the Pt (Pd) and Fe atoms can replace C atoms in graphene sheet. The CO oxidation reaction by molecular O2 on PtFe–graphene and PdFe–graphene was studied. The results show that the Eley–Rideal (ER) mechanism is expected over the Langmuir–Hinshelwood mechanism for CO oxidation on both PtFe–graphene and PdFe–graphene. Further, complete CO oxidation on PtFe–graphene and PdFe–graphene proceeds via a two‐step ER reaction: CO(gas) + O2(ads) → CO2(ads) + O(ads) and CO(gas) + O(ads) → CO2(ads). Our results reveal that PtFe/PdFe commonly embedded in graphene can be used as a catalyst for CO oxidation. The microscopic mechanism of the CO oxidation reaction on the atomic catalysts was explored.  相似文献   

9.
The O2 activation and CO oxidation on nitrogen‐doped C59N fullerene are investigated using first‐principles calculations. The calculations indicate that the C59N fullerene is able to activate O2 molecules resulting in the formation of superoxide species ( ) both kinetically and thermodynamically. The active superoxide can further react with CO to form CO2 via the Eley–Rideal mechanism by passing a stepwise reaction barrier of only 0.20 eV. Ab initio molecular dynamics (AIMD) simulation is carried out to evidence the feasibility of the Eley–Rideal mechanism. In addition, the second CO oxidation takes place with the remaining atomic O without any activation energy barrier. The full catalytic reaction cycles can occur energetically favorable and suggest a two‐step Eley–Rideal mechanism for CO oxidation with O2 catalyzed by the C59N fullerene. The catalytic properties of high percentage nitrogen‐doped fullerene (C48N12) is also examined. This work contributes to designing higher effective carbon‐based materials catalysts by a dependable theoretical insight into the catalytic properties of the nitrogen‐doped fullerene. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
CO and formaldehyde (HCHO) oxidation reactions were investigated over mesoporous Ag/Co3O4 catalysts prepared by one-pot (OP) and impregnation (IM) methods. It was found that the one-pot method was superior to the impregnation method for synthesizing Ag/Co3O4 catalysts with high activity for both reactions. It was also found that the catalytic behavior of mesoporous Co3O4 and Ag/Co3O4 catalysts for the both reactions was different. And the addition of silver on mesoporous Co3O4 did not always enhance the catalytic activity of final catalyst for CO oxidation at room temperature (20 °C), but could significantly improve the catalytic activity of final catalyst for HCHO oxidation at low temperature (90 °C). The high surface area, uniform pore structure and the pretty good dispersion degree of the silver particle should be responsible for the excellent low-temperature CO oxidation activity. However, for HCHO oxidation, the addition of silver played an important role in the activity enhancement. And the silver particle size and the reducibility of Co3O4 should be indispensable for the high activity of HCHO oxidation at low temperature.  相似文献   

11.
Precious-metal catalysts (e.g., Au, Rh, Ag, Ru, Pt, and Pd) supported on transition-metal oxides (e.g., Al2O3, Fe2O3, CeO2, ZrO2, Co3O4, MnO2, TiO2, and NiO) can effectively oxidize volatile organic compounds. In this study, porous platinum-supported zirconia materials have been prepared by a “surface-casting” method. The synthesized catalysts present an ordered nanotube structure and exhibited excellent performance toward the catalytic oxidation of formaldehyde. A facile method, utilizing a boiling water bath, was used to fabricate graphene aerogel (GA), and the macroscopic 3D Pt/ZrO2-GA was modified by introducing an adjustable MOF coating by a surface step-by-step method. The unblocked mesoporous structure of the graphene aerogel facilitates the ingress and egress of reactants and product molecules. The selected 7 wt.% Pt/ZrO2-GA-MOF-5 composite demonstrated excellent performance for HCHO adsorption. Additionally, this catalyst achieved around 90 % conversion when subjected to a reaction temperature of 70 °C (T90 %=70 °C). The Pt/ZrO2-GA-MOF-5 composite induces a catalytic cycle, increasing the conversion by simultaneously adsorbing and oxidizing HCHO. This work provides a simple approach to increasing reactant concentration on the catalyst to increase the rate of reaction.  相似文献   

12.
Cu catalysts are well-known for their good performance in CO2 conversion. Compared to CO and CH4 production, C2 products have higher volumetric energy densities and are more valuable in industrial applications. In this work, we screened the catalytic ability of C2 production on several 1D Cu atomic chain structures and find that Cu edge-decorated zigzag graphene nanoribbons (Cu−ZGNR) are capable of catalyzing CO2 conversion to ethanol, and CH3CH2OH is the main C2 product with a maximum free energy change of 0.60 eV. The planar tetracoordinate carbon structures in Cu-ZGNR provide unique chemical bonding features for catalytic reaction on the Cu atoms. Detailed mechanism analyses with transition states search show that CO* dimerization is favored against CHO* formation in the reaction. By adjusting the CO* coverage, the selectivity of the C2 product can be enhanced owing to less pronounced steric effects for COCHO*, which is feasible under experimental conditions. This study expands the catalyst family for C2 products from CO2 based on nano carbon structures with new features.  相似文献   

13.
Bao  Wen  Wang  Nan  He  Zhanhang 《Research on Chemical Intermediates》2021,47(7):3005-3023

In this paper, a series of Fe-doped TiO2 (Fe-TiO2) catalysts were prepared by ultrasonic hydrothermal method and were used to catalytic oxidation formaldehyde (HCHO) indoor at room temperature. Although the catalytic activity was improved compared with P25, but the final concentration of HCHO was still higher than the Chinese standard (GB 0.08 mg/m3), and the stability was restrict under room temperature. In order to improve the catalytic activity and stability of the catalysts, various concentrations of Ag were loaded on Fe-TiO2, and good catalytic oxidation effect was obtained and had a good repeat catalytic effect under room condition. UV–Vis, IR, PL, XRD, SEM, BET, XPS were used to characterize the materials. The results showed that the higher dispersion of active Ag, and the synergistic effect between Ag, Fe and TiO2 nanostructure were helpful to improve the catalytic oxidation ability of Ag@Fe-TiO2. In the repeat experiments, 0.6%Ag@0.3%Fe-TiO2 exhibited good catalytic activity and stability. The formaldehyde concentration was reduced to 0.05 mg/m3, after four rounds of tests, the formaldehyde concentration was still below 0.08 mg/m3, applying for long time indoor HCHO degradation at room temperature. Indicating the modification of Ag element can further promote the catalytic activity and stability of Fe-TiO2.

  相似文献   

14.
The most successful electrochemical conversion of ammonia from dinitrogen molecule reported to date is through a Li mediated mechanism. In the framework of the above fact and that Li anchored graphene is an experimentally feasible system, the present work is a computational experiment to identify the potential of Li anchored graphene as a catalyst for N2 to NH3 conversion as a function of (a) minimum number of Li atoms needed for anchoring on graphene sheets and (b) the role of chemical modification of graphene surfaces. The studies bring forth an understanding that Li anchored graphene sheets are potential catalysts for ammonia conversion with preferential adsorption of N2 through end-on configuration on Li atoms anchored on doped and pristine graphene surfaces. This mode of adsorption being characteristic of Nitrogen Reduction Reaction (NRR) through enzymatic pathway, examination of the same followed by analysis of electronic properties demonstrates that tri-Li atoms (Tri Atom Catalysts, TACs) are more efficient as catalysts for NRR as compared to two Li atoms (Di Atom Catalysts, DACs). Either way, the rate determining step was found to be *NH2→*NH3 step (mixed pathway) with ΔGmax=1.02 eV and *NH2−*NH3→*NH2 step (enzymatic pathway) with ΔGmax=1.11 eV for 1B doped TAC and DAC on graphene sheet, respectively. Consequently, this work identifies the viability of Li anchored graphene based 2-D sheets as hetero-atom catalyst for NRR.  相似文献   

15.
Hybridization of organometallic complexes with graphene‐based materials can give rise to enhanced catalytic performance. Understanding the chemical structures within hybrid materials is of primary importance. In this work, archetypical hybrid materials are synthesized by the reaction of an organometallic complex, [CoII(acac)2] (acac=acetylacetonate), with N‐doped graphene‐based materials at room temperature. Experimental characterization of the hybrid materials and theoretical calculations reveal that the organometallic cobalt‐containing species is coordinated to heterocyclic groups in N‐doped graphene as well as to its parental acac ligands. The hybrid material shows high electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media, and superior durability and methanol tolerance to a Pt/C catalyst. Based on the chemical structures and ORR experiments, the catalytically active species is identified as a Co‐O4‐N structure.  相似文献   

16.
Considering the problems of high costs, low catalytic activity and selectivity in the metal-based catalysts for CO2 electroreduction, we apply boron-containing metal-free B2S sheet as an alternative to the traditional metal-based catalysts. Reaction energy calculations identify the preferred “Formate” pathway for CO2 conversion to CH3OH on B2S, in which the thermodynamic energy barrier obtained by using the Computational Hydrogen Electrode model is 0.57 eV, and the kinetic energy barrier obtained by searching the transition states is 1.18 eV. Another possible reaction pathway, “RWGS+CO-hydro”, is suppressed and the hydrogen evolution reaction (HER) side reaction is nonspontaneous. Compared to Cu(211) with the highest catalytic activity among all transition metals, B2S sheet exhibits a better catalytic activity with a lower overpotential for CO2 reduction and a better selectivity that suppresses the non-target reaction.  相似文献   

17.
刘靖  王安琪  景欢旺 《催化学报》2014,35(10):1669-1675
金属离子掺杂纳米TiO2(M-TiO2,M=Zn2+,Cu2+,Co2+,Mn2+,Ni2+)在CO2与环氧化合物的偶联反应中表现出较高的催化活性.反应以四正丁基碘化铵(TBAI)为共催化剂,在无溶剂条件下进行.考察了反应温度、反应时间和CO2压力在Zn-TiO2/TBAI体系中对反应性能的影响.作为无毒的多相催化剂,Zn-TiO2可循环使用5次,其催化活性没有明显降低.  相似文献   

18.
The high-temperature complete oxidation of methane over metallic monolith-supported zeolite catalysts containing isolated Mn, Co, and Pd ions was studied. The reaction involves heterogeneous and heterogeneous-homogeneous catalytic processes. The ratio between these processes depends on the temperature, feed rate, and the amount of catalyst charged in the reactor. In the heterogeneous catalytic process, the activity of the catalysts supported on the Fe—Cr—Al monolithic alloy decreases in the series Pd > Mn > Co > Fe—Cr—Al monolith and the reaction rate uniformly increases with increasing contact time. In the heterogeneous-homogeneous process, the reaction rate drastically increases and a 100% conversion of methane to CO2 can be achieved by minor variations of the contact time. In this case, methane oxidation depends not only on the catalyst chemical composition but also on its external surface area and the reaction volume.  相似文献   

19.
The calcined Mg‐Al layered double hydroxides (LDHs) with a Mg/Al molar ratio of 3:1 were synthesized and characterized thoroughly by X‐ray diffraction (XRD), temperature‐programmed desorption (TPD) of CO2, and thermogravimetric analysis (TGA). Thus the calcined Mg‐Al LDHs were used as catalyst for the catalytic synthesis of disubstituted ureas from amines and CO2. The effects of reaction time, reaction temperature, pressure, solvent and calcined temperature on activity have been investigated. The results indicated that aliphatic amines, cyclohexylamine and benzylamine can be converted to the corresponding ureas selectively over the calcined Mg‐Al LDHs catalysts with N‐methyl‐2‐pyrrolidone (NMP) as solvent without using any dehydrating regent. The catalyst can be recycled several times with only slight loss of activity.  相似文献   

20.
Chemical doping has been demonstrated to be an effective way to realize new functions of graphene as metal‐free catalyst in energy‐related electrochemical reactions. Although efficient catalysis for the oxygen reduction reaction (ORR) has been achieved with doped graphene, its performance in the hydrogen evolution reaction (HER) is rather poor. In this study we report that nitrogen and sulfur co‐doping leads to high catalytic activity of nanoporous graphene in HER at low operating potential, comparable to the best Pt‐free HER catalyst, 2D MoS2. The interplay between the chemical dopants and geometric lattice defects of the nanoporous graphene plays the fundamental role in the superior HER catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号