首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The tumor microenvironment (TME) significantly influences cancer evolution and therapeutic efficacy. Targeting biofunctional molecules to the TME has long been appreciated as a means of raising local drug concentrations and reducing systemic toxicities. The booming nanotechnology field has realized the importance of cathepsin B to derive a variety of intelligent enzyme-responsive nanosized drug delivery systems (nanoDDS) to improve treatment responses and clinical outcomes. In this tutorial review, after introducing the molecular structure and physiological/pathological functions of cathepsin B, the outstanding achievements of cathepsin B-responsive nanoplatforms in the precise diagnosis, targeted therapy, and synergistic theranostics of malignant tumors are systematically described. Finally, the challenges of enzyme-substrate incompatibility, low diagnostic sensitivity, mass production and biocompatibility of multifunctional nanoDDS are considered in order to successfully promote them to clinical applications.  相似文献   

2.
Cathepsin B, a cysteine protease, is an important target in fighting cancer. This enzyme has been implicated in enhancing tumor invasiveness and metastasis, therefore inhibitors for cathepsin B are highly sought as potential anticancer and antimetastatic agents. A structure-based design effort was pursued in arriving at a template for inhibition of cathepsin B. Focused compound libraries were synthesized based on this template, which were screened for cathepsin B inhibitory properties. Compound 2, 1-(2(R)-[1(S)-acetoxy-2-[2(S)-(2,4-difluoro-benzoylamino)-3-phenyl-propionylaminooxy]-2-oxo-ethyl]-pentanoyl)-pyrrolidine-2(S)-carboxylic acid benzyl ester, is the prototype of this novel class of cysteine protease inhibitor that emerged from the search. The molecule modifies the active site of cathepsin B covalently, irreversibly, and efficiently, a process for which the kinetic parameters were evaluated. A set of three judiciously altered variants of compound 2 was also synthesized to explore the details of the proposed mechanism of action by this inhibitor. Compound 2 and its analogues may prove useful tools in reversing the deleterious effect of cathepsin B in fighting cancer.  相似文献   

3.
New capped silica mesoporous nanoparticles for intracellular controlled cargo release within cathepsin B expressing cells are described. Nanometric mesoporous MCM‐41 supports loaded with safranin O ( S1‐P ) or doxorubicin ( S2‐P ) containing a molecular gate based on a cathepsin B target peptidic sequence were synthesized. Solids were designed to show “zero delivery” and to display cargo release in the presence of cathepsin B enzyme, which selectively hydrolyzed in vitro the capping peptide sequence. Controlled delivery in HeLa, MEFs WT, and MEFs lacking cathepsin B cell lines were also tested. Release of safranin O and doxorubicin in these cells took place when cathepsin B was active or present. Cells treated with S2‐P showed a fall in cell viability due to nanoparticles internalization, cathepsin B hydrolysis of the capping peptide, and cytotoxic agent delivery, proving the possible use of these nanodevices as new therapeutic tools for cancer treatment.  相似文献   

4.
The efficiency of antitumor immunotherapy is usually limited by the immunosuppressive tumor microenvironment (TME). In this study, we developed a chemo-immunotherapy strategy that is able to improve the immunosuppressive TME for enhancing the antitumor efficacy. The chemo-immunotherapy was achieved by the topical co-delivery of a chemotherapeutic drug, Doxorubicin (DOX), an immune checkpoint blocking antibody targeting programmed cell death protein 1 (aPD-1), and an indoleamine-2,3-dioxygenase (IDO) inhibitor, 1-methyl-d -tryptophan (d -1MT) by using a thermosensitive polypeptide hydrogel. It was revealed that the sustained DOX release from the hydrogel caused the immunogenic cell death (ICD) of B16F10 cells in vitro, and the tumor cell lysates subsequently promoted the activation of dendritic cells (DCs). After intratumoral injection into B16F10 melanoma-bearing mice, the DOX/aPD-1/D-1MT co-loaded hydrogel exhibited enhanced tumor inhibition efficacy and prolonged animal survival time, compared to the DOX/aPD-1/D-1MT mixed solution, DOX-loaded hydrogel or DOX/aPD-1 co-loaded hydrogel. The improvement of immunosuppressive TME and enhancement of antitumor immune response after the local chemo-immunotherapy were demonstrated by the augmented activation of DCs and increased infiltration of CD8+ and CD4+ T cells, as well as enhanced secretion of pro-inflammatory cytokines. Therefore, the hydrogel-based local chemo-immunotherapy system holds great potential for effective antitumor treatment.  相似文献   

5.
Tumor-associated macrophages (TAMs) play a critical role in the immunosuppressive solid tumor microenvironment (TME), yet in situ engineering of TAMs for enhanced tumor immunotherapy remains a significant challenge in translational immuno-oncology. Here, we report an innovative nanodrug-delivering-drug (STNSP@ELE) strategy that leverages two-dimensional (2D) stanene-based nanosheets (STNSP) and β-Elemene (ELE), a small-molecule anticancer drug, to overcome TAM-mediated immunosuppression and improve chemo-immunotherapy. Our results demonstrate that both STNSP and ELE are capable of polarizing the tumor-supportive M2-like TAMs into a tumor-suppressive M1-like phenotype, which acts with the ELE chemotherapeutic to boost antitumor responses. In vivo mouse studies demonstrate that STNSP@ELE treatment can reprogram the immunosuppressive TME by significantly increasing the intratumoral ratio of M1/M2-like TAMs, enhancing the population of CD4+ and CD8+ T lymphocytes and mature dendritic cells, and elevating the expression of immunostimulatory cytokines in B16F10 melanomas, thereby promoting a robust antitumor response. Our study not only demonstrates that the STNSP@ELE chemo-immunotherapeutic nanoplatform has immune-modulatory capabilities that can overcome TAM-mediated immunosuppression in solid tumors, but also highlights the promise of this nanodrug-delivering-drug strategy in developing other nano-immunotherapeutics and treating various types of immunosuppressive tumors.  相似文献   

6.
In this article, we reveal the temperature memory effect (TME) in a commercial thermoplastic polymer, namely ethylene‐vinyl acetate (EVA), within its glass transition range via a series of differential scanning calorimeter (DSC) tests. In addition, we investigate the influence of heating holding time and also compare the observed TME in current study with that of shape memory alloys (SMAs). It is concluded that the TME via DSC (without any macroscopic shape change) is achievable within the glass transition range of a polymer. Conversely, although the observed TME shares the many similar features as those in SMAs, due to the nature of micro‐Brownian motion in the glass transition of polymers, the resulted TME is strongly affected by the heating holding time. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1731–1737  相似文献   

7.
Many antibody–drug conjugates (ADCs) have failed to achieve a sufficient therapeutic window in clinical studies either due to target-mediated or off-target toxicities. To achieve an additional safety level, a new class of antibody–prodrug conjugates (APDCs) directed against different targets in solid tumors is here described. The tumor-associated lysosomal endopeptidase legumain with a unique cleavage sequence was utilized for APDC metabolism. Legumain-activatable APDCs were as potent as their cathepsin B-activatable analogues. The peptide sequence susceptible to legumain cleavage was optimized for further discrimination of the formation of active metabolites within tumor cells versus healthy tissues, leveraging different tissue-specific legumain activities. Optimized APDCs with slow legumain-mediated conversion reduced preclinically the levels of active metabolite in healthy organs while retaining high activity against different TWEAKR- and B7H3-expressing tumors.  相似文献   

8.
Recent findings suggest that tumor microenvironment (TME) plays an important regulatory role in the occurrence, proliferation, and metastasis of tumors. Different from normal tissue, the condition around tumor significantly altered, including immune infiltration, compact extracellular matrix, new vasculatures, abundant enzyme, acidic pH value, and hypoxia. Increasingly, researchers focused on targeting TME to prevent tumor development and metastasis. With the development of nanotechnology and the deep research on the tumor environment, stimulation-responsive intelligent nanostructures designed based on TME have attracted much attention in the anti-tumor drug delivery system. TME-targeted nano therapeutics can regulate the distribution of drugs in the body, specifically increase the concentration of drugs in the tumor site, so as to enhance the efficacy and reduce adverse reactions, can utilize particular conditions of TME to improve the effect of tumor therapy. This paper summarizes the major components and characteristics of TME, discusses the principles and strategies of relevant nano-architectures targeting TME for the treatment and diagnosis systematically.  相似文献   

9.
Cathepsins are key enzymes in mediating turnover of cytosolic proteins. In the context of cancer progression, those most actively studied include cathepsins D and B which have been implicated in processes such as growth and metastasis of many types of cancer. For more than 10 years, their roles as tumor marker and prognostic indicators have been studied, especially in breast cancer. Most of the studies relating the role of cathepsin D in cancer used immunological detection methods to determine the level of enzyme but do not reflect enzyme activity. Moreover, one of the problems in understanding cathepsin D clinical studies is that immunoassays may employ antibodies against the different form of the antigen. As an alternative, this work describes an indirect method to assess the active form of cathepsin D based on ELISA quantification of a specific and stable product of hemoglobin hydrolysis: VV-hemorphin-7. The procedure described here allows a low detection limit (ca. 5×10−9 M) and thus can represent an original approach to evaluate cathepsin D activity in biological samples.  相似文献   

10.
Cytokine therapy mediates the interaction between immune cells and non-immune cells in the tumor microenvironment (TME), forming a promising approach in cancer therapy. However, the dose-dependent adverse effects and non-selective stimulation of cytokines limit their clinical use. We herein report a sonodynamic cytokine nano-immunocomplex (SPNAI) that specifically activates effector T cells (Teffs) for antitumor immunotherapy. By conjugating anti-interleukin-2 (anti-IL-2) antibodies S4B6 on the semiconducting polymer nanoparticles to afford SPNA, this nanoantibody SPNA can bind with IL-2 to form SPNAI which can block the interaction between IL-2 and regulatory T cells (Tregs), selectively activating Teffs in TME. Moreover, SPNAI generates 1O2 to trigger immunogenic cell death of cancer cells upon sono-irradiation, which promotes the maturation of dendritic cells and the proliferation of Teffs. This SPNAI-mediated combination sonodynamic immunotherapy thus elevates the ratio of Teffs/Tregs in TME, resulting in inhibition of tumor growth, suppression of lung metastasis and prevention of tumor relapse.  相似文献   

11.
The mechanisms for the addition reactions of phenylhalocarbenes and phenyldihalomethide carbanions with acrylonitrile (ACN) and trimethylethylene (TME) have been investigated using an ab initio BH and HLYP/6-31G (d, p) level of theory. Solvent effects on these reactions have been explored by calculations that included a polarizable continuum model (PCM) for the solvent (THF). These model calculations show that for the addition of phenylhalocarbenes, a TME species may readily undergo addition reactions with carbenes while ACN has a high-energy barrier to overcome. It was also found that phenyldihalomethide carbanions do not readily add to the electron-rich TME. The cyclopropane yields only appear to occur via addition of PhCBr to TME. However, the cyclopropanation proceeds not only via slow addition of phenylhalocarbenes to ACN but also forms through the stepwise reaction of phenyldihalomethide carbanions with ACN. Our calculation results are in good agreement with experimental observations (Moss, R.A.; Tian, J.-Z. J. Am. Chem. Soc. 2005, 127, 8960) that indicate that the cyclopropanation of phenylhalocarbenes and phenyldihalomethide carbanions with ACN are concurrent in THF.  相似文献   

12.
Targeting the tumor microenvironment (TME) provides opportunities to modulate tumor physiology, enhance the delivery of therapeutic agents, impact immune response and overcome resistance. Photodynamic therapy (PDT) is a photochemistry-based, nonthermal modality that produces reactive molecular species at the site of light activation and is in the clinic for nononcologic and oncologic applications. The unique mechanisms and exquisite spatiotemporal control inherent to PDT enable selective modulation or destruction of the TME and cancer cells. Mechanical stress plays an important role in tumor growth and survival, with increasing implications for therapy design and drug delivery, but remains understudied in the context of PDT and PDT-based combinations. This review describes pharmacoengineering and bioengineering approaches in PDT to target cellular and noncellular components of the TME, as well as molecular targets on tumor and tumor-associated cells. Particular emphasis is placed on the role of mechanical stress in the context of targeted PDT regimens, and combinations, for primary and metastatic tumors.  相似文献   

13.
Solar UVA exposure plays a causative role in skin photoaging and photocarcinogenesis. Here, we describe the proteomic identification of novel UVA-targets in human dermal fibroblasts following a two-dimensional-difference-gel-electrophoresis (2D-DIGE) approach. Fibroblasts were exposed to noncytotoxic doses of UVA or left untreated, and total protein extracts underwent CyDye-labeling followed by 2D-DIGE/mass-spectrometric identification of differentially expressed proteins, confirmed independently by immunodetection. The protein displaying the most pronounced UVA-induced upregulation was identified as the nucleolar protein nucleophosmin. The protein undergoing the most pronounced UVA-induced downregulation was identified as cathepsin B, a lysosomal cysteine-protease displaying loss of enzymatic activity and altered maturation after cellular UVA exposure. Extensive lysosomal accumulation of lipofuscin-like autofluorescence and osmiophilic material occurred in UVA-exposed fibroblasts as detected by confocal fluorescence microscopy and transmission electron microscopy, respectively. Array analysis indicated UVA-induced upregulation of oxidative stress response gene expression, and UVA-induced loss of cathepsin B enzymatic activity in fibroblasts was suppressed by antioxidant intervention. Pharmacological cathepsin B inhibition using CA074Me mimicked UVA-induced accumulation of lysosomal autofluorescence and deficient cathepsin B maturation. Taken together, these data support the hypothesis that cathepsin B is a crucial target of UVA-induced photo-oxidative stress causatively involved in dermal photodamage through the impairment of lysosomal removal of lipofuscin.  相似文献   

14.
The nonpolar [3 + 2] cycloaddition (32CA) reaction of the carbonyl ylide (CY) 23 with tetramethylethylene (TME) 24 has been studied with DFT methods at the B3LYP/6-31G* level. This cycloaddition reaction, which has a very low activation energy of 4.7 kcal/mol, takes place through a synchronous transition structure. A topological analysis of the ELF along the 32CA reaction provides a new scope of the electronic structure of CY 23 as a pseudodiradical species offering a sound explanation of the high reactivity of this CY in nonpolar reactions. In addition, this analysis points to the nonparticipation of the oxygen lone pairs in the 32CA reaction. This cycloaddition can be seen as a pseudodiradical attack of the terminal carbon atoms of the CY 23 on the π system of TME 24. Therefore, the present study establishes that this 32CA reaction, which is not a pericyclic electron reorganization, may be electronically classified as a [2n + 2π] process.  相似文献   

15.
Two architecturally new isoquinolines, jasisoquinolines A and B, were isolated from a marine sponge Jaspis sp. as cathepsin B inhibitors. Their structures were determined by a combination of spectroscopic analyses and chemical methods. Both jasisoquinolines A and B inhibit cathepsin B with an IC(50) value of 10 μg/mL.  相似文献   

16.
Poly-L-lysine with molecular masses of 3.3-290 kDa increased the amidolytic activities of leukocyte elastase and cathepsin G at low concentration, but had little effect on the activities of pancreatic elastase, alpha-chymotrypsin, plasmin and thrombin. Highly purified cathepsin G was obtained from column of EAH Sepharose 4B or Suc-L-Tyr-D-Leu-D-Val-pNA-Sepharose (affinity chromatography) by elution with poly-L-lysine solution (0.4 mg/ml, molecular weight (MW.) 290000 or 2.2 mg/ml, MW. 3300). Leukocyte elastase, adsorbed to Suc-L-Tyr-D-Leu-D-Val-pNA-Sepharose, was not eluted with poly-L-lysine solution. The amino acid composition of purified cathepsin G has been determined.  相似文献   

17.
肿瘤微环境(TME)的复杂性,使得单一治疗方式很难实现完全治愈。 为此,构建了一种负载吲哚菁绿(ICG)的铁掺杂的聚2-硝基-1,4-苯二胺多功能纳米球Fe-PNPD-ICG(FPIs),用于光热(PTT)/光动力(PDT)/化学动力学(CDT)的联合治疗。 在808 nm激光器照射下,ICG作为光敏剂可以产生单线态氧,铁掺杂的聚2-硝基-1,4-苯二胺纳米球作为光热剂具有36.65%的光热转换效率。 FPIs一旦内化到肿瘤内,由Fe3+/Fe2+转化引发Fenton反应产生·OH实现化学动力学治疗,反应过程中可以清除TME中过表达的谷胱甘肽(GSH),从而降低肿瘤中的抗氧化能力。 同时,产生的氧气可以改善TME中乏氧情况,增强PDT的治疗效果。 因此,FPIs是PTT/PDT/CDT联合治疗的一种理想材料,在肿瘤治疗中具有潜在的应用前景。  相似文献   

18.
A high-performance liquid chromatographic procedure for the isolation of the three cysteine proteinases, namely cathepsins B, H and L, is described. The method is based on the following four steps. (1) A classical AcA 44 gel permeation separation with a 30-70% ammonium sulphate fraction from the human liver homogenate is used to remove the non-enzymic high-molecular-mass components. (2) Preparative cation-exchange chromatography on a CM-SW TSK column can separate the three proteinases. (3) An anion-exchange step on a semi-preparative DEAE-SW TSK column for the cathepsin H fraction is used to remove a small amount of cathepsins B and L activities. (4) The three separated enzymes are purified on an analytical TSK gel 2000 SW column. The purity of each enzyme is assessed by sodium dodecyl sulphate polyacrylamide gel electrophoresis and electrofocusing on polyacrylamide gels. To check the activities of the purified proteinases, the kinetic constants [Michaelis constant (KM) and catalytic constant (Kcat)] and the ratio Kcat/KM against the fluorigenic substrates Arg-NH-Mec, Z-Arg-Arg-NH-Mec and Z-Phe-Arg-NH-Mec after active-site titration using E-64, were determined. Z-Phe-Phe-CNH2 was also used as a specific inhibitor of cathepsin L. This method requires only 6 g of human liver, and gives a high yield of the three lysosomal cysteine-proteinases: thus, about 150 micrograms of cathepsin B and 50 micrograms each of cathepsins L and H are obtained in a single run.  相似文献   

19.
Enzyme‐responsive, hybrid, magnetic silica nanoparticles have been employed for multifunctional applications in selective drug delivery and intracellular tumor imaging. In this study, doxorubicin (Dox)‐conjugated, enzyme‐cleavable peptide precursors were covalently tethered onto the surface of uniform silica‐coated magnetic nanoparticles through click chemistry. This enzyme‐responsive nanoparticle conjugate demonstrated highly efficient Dox release upon specific enzyme interactions in vitro. It also exhibits multiple functions in selective tumor intracellular drug delivery and imaging in the tumor cells with high cathepsin B expression, whereas it exhibited lower cytotoxicity towards other cells without enzyme expression.  相似文献   

20.
To design a potent inhibitor specific for cathepsin B (rat liver), the tertiary structure was predicted based on the crystal structure of the papain complexed with (+)-(2S,3S)-3-(1-[N-(3-methylbutyl)amino]leucylcarbonyl)oxirane-2- carbolylic acid (E-64-c), a thiol protease inhibitor. Taking advantage of the structural characteristics of the predicted active site, seventeen inhibitors were chemically synthesized by molecular modeling, and one of them, N-(L-3-trans-propylcarbamoyloxirane-2-carbonyl)-L-isoleucyl-L-p rol ine (CA-074) was shown to be the first potent inhibitor specific for cathepsin B. The relationship between the structure and inhibitory activity is discussed based on the model structure of the cathepsin B-inhibitor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号