首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isothermal and nonisothermal crystallization kinetics of nylon‐46 were investigated with differential scanning calorimetry. The equilibrium melting enthalpy and the equilibrium melting temperature of nylon‐46 were determined to be 155.58 J/g and 307.10 °C, respectively. The isothermal crystallization process was described by the Avrami equation. The lateral surface free energy and the end surface free energy of nylon‐46 were calculated to be 8.28 and 138.54 erg/cm2, respectively. The work of chain folding was determined to be 7.12 kcal/mol. The activation energies were determined to be 568.25 and 337.80 kJ/mol for isothermal and nonisothermal crystallization, respectively. A convenient method was applied to describe the nonisothermal crystallization kinetics of nylon‐46 by a combination of the Avrami and Ozawa equations. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1784–1793, 2002  相似文献   

2.
The isothermal and nonisothermal crystallization kinetics of partially melted nylon‐1212 was investigated with differential scanning calorimetry. Because of partial melting, the pre‐existing crystals changed the crystallization mechanism and had a strong effect on the crystallization process. The Avrami exponent and interfacial free energy of the chain‐folded surface of partially melted nylon‐1212 were higher than those of completely melted nylon‐1212. The work of chain folding was determined to be 5.9 kcal/mol. The activation energy of the isothermal crystallization process was determined to be 399.1 kJ/mol, far higher than that of complete melting. The crystallization rate coefficient and Jeziorny analysis indicated that the ability of nonisothermal crystallization for partially melted nylon‐1212 was enhanced. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3222–3230, 2005  相似文献   

3.
Differential scanning calorimetry was used to investigate the isothermal crystallization, subsequent melting behavior, and nonisothermal crystallization of syndiotactic 1,2‐polybutadiene (st‐1,2‐PB) produced with an iron‐based catalyst system. The isothermal crystallization of two fractions was analyzed according to the Avrami equation. The morphology of the crystallite was observed with polarized optical microscopy. Double melting peaks were observed for the samples isothermally crystallized at 125–155 °C. The low‐temperature melting peak, which appeared approximately 5 °C above the crystallization temperature, was attributed to the melting of imperfect crystals formed by the less stereoregular fraction. The high‐temperature melting peak was associated with the melting of perfect crystals formed by the stereoregular fraction. With the Hoffman–Weeks approach, the value of the equilibrium melting temperature was derived. During the nonisothermal crystallization, the Ozawa method was limited in obtaining the kinetic parameters of st‐1,2‐PB. A new method that combined the Ozawa method and the Avrami method was employed to analyze the nonisothermal crystallization of st‐1,2‐PB. The activation energies of crystallization under nonisothermal conditions were calculated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 553–561, 2005  相似文献   

4.
A new regular poly(ester amide) consisting of glycolic acid and 12‐aminododecanoic acid was synthesized by a thermal polycondensation method involving the formation of a metal halide salt. Polymerization could start in liquefied or solid phases, depending on the reaction temperature. The polymerization kinetics were investigated by isothermal and nonisothermal isoconversional methods. The reaction model was selected with both Coats–Redfern and isokinetic relationships. The activation energy was higher when the reaction took place mainly in the solid state. A compensation effect was found between the frequency factor and the activation energy. The thermal properties of the new polymer were studied as well as the isothermal crystallization from the melt state. Melt‐grown spherulites were studied by means of polarizing optical microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1199–1213, 2006  相似文献   

5.
This article investigated the melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) (PBS) and its copolyester (PBSR) modified with rosin maleopimaric acid anhydride, using wide‐angle X‐ray diffraction, differential scanning calorimeter (DSC), and polarized optical microscope. Subsequent DSC scans of isothermally crystallized PBS and PBSR exhibited two melting endotherms, respectively, which was due to the melt‐recrystallization process occurring during the DSC scans. The equilibrium melting point of PBSR (125.9 °C) was lower than that of PBS (139 °C). The commonly used Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the model combining Avrami equation and Ozawa equation was employed. The result showed a consistent trend in the crystallization process. The crystallization rate was decreased, the perfection of crystals was decreased, the recrystallization was reduced, and the spherulitic morphologies were changed when the huge hydrogenated phenanthrene ring was added into the chain of PBS. The activation energy (ΔE) for the isothermal crystallization process determined by Arrhenius method was 255.9 kJ/mol for PBS and 345.7 kJ/mol for PBSR. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 900–913, 2006  相似文献   

6.
The crystallization behavior of a new sequential polyester constituted by glycolic acid and 4‐hydroxybutyric acid has been studied under nonisothermal conditions. Nonisothermal melt crystallization has been followed by means of hot‐stage optical microscopy (HSOM), with experiments performed at different cooling rates. Two crystallization regimes have been found, which is in good agreement with previous isothermal studies and with the different spherulitic morphologies that were observed. The kinetics of both glass and melt crystallizations has also been studied by differential scanning calorimetry (DSC) and considering the typical Avrami, Ozawa, and Cazé analyses. Only the last gave Avrami exponents, which were in good agreement with those measured under isothermal conditions, suggesting a spherulitic growth with a predetermined nucleation. Isoconversional data of melt and glass nonisothermal crystallizations have been combined to obtain the Hoffman and Lauritzen parameters. Results again indicate the existence of two crystallization regimes with nucleation constants close to those deduced from isothermal DSC experiments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 121–133, 2008  相似文献   

7.
The poly(3‐hydroxbutyrate‐co‐3‐hydroxyvalerate)/poly(ε‐caprolactone) block copolymers (PHCLs) with three different weight ratios of PCL blocks (38%, named PHCL‐38; 53%, named PHCL‐53; and 60%, named PHCL‐60) were synthesized by using PHBV with two hydroxyl end groups to initiate ring‐opening polymerization of ε‐caprolactone. During DSC cooling process, melt crystallization of PHCL‐53 at relatively high cooling rates (9, 12, and 15 °C min?1) and PHCL‐60 at all the selected cooling rates corresponded to PCL blocks so that PHCL‐53 and PHCL‐60 were used to study the nonisothermal crystallization behaviors of PCL blocks. The kinetics of PCL blocks in PHCL‐53 and PHCL‐60 under nonisothermal crystallization conditions were analyzed by Mo equation. Mo equation was successful in describing the nonisothermal crystallization kinetics of PCL blocks in PHCLs. Crystallization activation energy were estimated using Kissinger's method. The results of kinetic parameters showed that both blocks crystallized more difficultly than corresponding homopolymers. With the increase of PCL content, the crystallization rate of PCL block increased gradually. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

8.
The crystallization behavior of a series of poly(ethylene‐co‐butylene naphthalate) (PEBN) random copolymers was studied. Wide‐angle X‐ray diffraction (WAXD) patterns showed that the crystallization of these copolymers could occur over the entire range of compositions. This resulted in the formation of poly(ethylene naphthalate) or poly(butylene naphthalate) crystals, depending on the composition of the copolymers. Sharp diffraction peaks were observed, except for 50/50 PEBN. Eutectic behavior was also observed. This showed isodimorphic cocrystallization of the PEBN copolymers. The variation of the enthalpy of fusion of the copolymers with the composition was estimated. The isothermal and nonisothermal crystallization kinetics were studied. The crystallization rates were found to decrease as the comonomer unit content increased. The tensile properties were also measured and were found to decrease as the butylene naphthalate content of the copolymers increased. For initially amorphous specimens, orientation was proved by WAXD patterns after drawing, but no crystalline reflections were observed. However, the fast crystallization of drawn specimens occurred when they were heated above the glass‐transition temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 843–860, 2004  相似文献   

9.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

10.
Polymer networks showing a thermally induced shape‐memory effect were prepared through the crosslinking of oligo(?‐caprolactone)dimethacrylates under photocuring with or without an initiator. The influence of the molecular weight of the oligo(?‐caprolactone)dimethacrylates and the initiator concentration on the macroscopic properties of the polymer networks was investigated. The isothermal and nonisothermal crystallization behavior of the polymer networks was evaluated as a basic principle of the functionalization process. Shape‐memory properties such as the strain fixity and strain recovery rate were quantified with cyclic thermomechanical tensile experiments for different maximum elongations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1369–1381, 2005  相似文献   

11.
The poly(p‐phenylene sulfide) (PPS) nonisothermal cold‐crystallization behavior was investigated in a wide heating rate range. The techniques employed were the usual Differential Scanning Calorimetry (DSC), and the less conventional FT‐IR spectroscopy and Energy Dispersive X‐ray Diffraction (EDXD). The low heating rates (Φ) explored by EDXD (0.1 K min?1) and FT‐IR (0.5–10 K min?1) are contiguous and complementary to the DSC ones (5–30 K min?1). The crystallization temperature changes from 95 °C at Φ = 0.05 K min?1 to 130 °C at Φ = 30 K min?1. In such a wide temperature range the Kissinger model failed. The model is based on an Arrhenius temperature dependence of the crystallization rate and is widely employed to evaluate the activation energy of the crystallization process. The experimental results were satisfactorily fit by replacing in the Kissinger model the Arrhenius equation with the Vogel–Fulcher–Tamann function and fixing U* = 6.28 k J mol?1, the activation energy needed for the chains movements, according to Hoffmann. The temperature at which the polymer chains are motionless (T = 42 °C) was found by fitting the experimental data. It appears to be reasonable in the light of our previously reported isothermal crystallization results, which indicated T = 48 °C. Moreover, at the lower heating rate, mostly explored by FT‐IR, a secondary stepwise crystallization process was well evidenced. In first approximation, it contributes to about 17% of the crystallinity reached by the sample. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2725–2736, 2005  相似文献   

12.
The nonisothermal crystallization kinetics of a luminescent conjugated polymer, poly(9,9‐dihexylfluorene‐altco‐2,5‐didecyloxy‐1,4‐phenylene) (PF6OC10) with three different molecular weights was investigated by differential scanning calorimetry under different cooling rates from the melt. With increasing molecular weight of PF6OC10, the temperature range of crystallization peak steadily became narrower and shifted to higher temperature region and the crystallization rate increased. It was found that the Ozawa method failed to describe the nonisothermal crystallization behavior of PF6OC10. Although the Avrami method did not effectively describe the nonisothermal crystallization kinetics of PF6OC10 for overall process, it was valid for describing the early stage of crystallization with an Avrami exponent n of about 3. The combined method proposed in our previous report was able to satisfactorily describe the nonisothermal crystallization behavior of PF6OC10. The crystallization activation energies determined by Kissinger, Takhor, and Augis‐Bennett models were comparable. The melting temperature of PF6OC10 increased with increasing molecular weight. For low‐molecular‐weight sample, PF6OC10 showed the characteristic of double melting phenomenon. The interval between the two melting peaks decreased with increasing molecular weight, and only one melting peak was observed for the high‐molecular‐weight sample. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 976–987, 2007  相似文献   

13.
The well dispersion of functionalized multi‐walled carbon nanotube (f‐MWCNT) in nylon 6 matrix was prepared by solution mixing techniques. The isothermal and nonisothermal crystallization kinetics of nylon 6 and nylon 6/f‐MWCNT nanocomposites were studied by differential scanning calorimetry (DSC), X‐ray diffraction and polarized optical microscopy analysis. DSC isothermal results revealed that the activation energy of nylon 6 extensively decreased by adding 1 wt % f‐MWCNT into nylon 6, suggesting that the addition of small amount of f‐MWCNT probably induces the heterogeneous nucleation. Nevertheless, the addition of more f‐MWCNT into nylon 6 matrix reduced the transportation ability of polymer chains during crystallization process and thus increased the activation energy. The nonisothermal crystallization of nylon 6/f‐MWCNT nanocomposites was also discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 158–169, 2008  相似文献   

14.
Hot‐stage optical microscopy was used to study the crystal morphology, nucleation, and spherulitic growth rates of poly(p‐dioxanone) (PDS) homopolymer and an 89/11 PDS/glycolide segmented block copolymer. A wide range of crystallization conditions were experimentally accessible, allowing the inspection of various morphological features and accurate estimations of characteristic growth parameters, including radial growth and nucleation rates. Although the regime analysis of the crystallization kinetics indicated no breaks in the growth rate curve, the isothermal data were in excellent agreement with the Hoffman–Lauritzen theory. Spherulitic growth rates obtained from optical measurements are compared with values of the half‐time of crystallization determined earlier by differential scanning calorimetry. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3073–3089, 2001  相似文献   

15.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

16.
Reflection–absorption infrared spectroscopy was used to study the crystallization behavior of poly(ethylene terephthalate) (PET) ultrathin films. The crystallinity of ultrathin films was estimated by the fraction of trans conformers of PET. The isothermal and nonisothermal crystallization kinetics of ultrathin films with different thicknesses were investigated. The thinner PET film showed slower kinetics during isothermal crystallization than the thicker film. Moreover, the final crystallinity of films with various thicknesses were reduced with decreasing thickness. An Avrami equation was used to fit the acquired results. The Avrami exponents decreased with the film thickness. As for the nonisothermal crystallization, the cold‐crystallization starting temperature shifted to a lower temperature as the film thickness increased. The influence of the substrate on the crystallization kinetics of the films was also studied. The half‐crystallization times and final crystallinities of ultrathin films adsorbed onto a self‐assembled‐monolayer‐treated surface and an untreated substrate were clearly different, although their thickness dependence was similar. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4440–4447, 2004  相似文献   

17.
Poly(butylene succinate) (PBSu) and two poly(butylene succinate‐co‐propylene succinate)s were synthesized via the direct polycondensation reaction. The copolyesters were characterized as having 7.0.and 11.5 mol % propylene succinate (PS) units, respectively, by 1H NMR. A differential scanning calorimeter (DSC) and a polarized light microscope (PLM) adopted to study the nonisothermal crystallization of these polyesters at a cooling rate of 1, 2, 3, 5, 6, and 10 °C/min. Morphology and the isothermal growth rates of spherulites under PLM experiments were monitored and obtained by curve‐fitting. These continuous rate data were analyzed with the Lauritzen?Hoffman equation. A transition of regime II → III was found at 95.6, 84.4, and 77.3 °C for PBSu, PBPSu 95/5, and PBPSu 90/10, respectively. DSC exothermic curves show that all of the nonisothermal crystallization occurred in regime III. DSC data were analyzed using modified Avrami, Ozawa, Mo, Friedman, and Vyazovkin equations. All the results of PLM and DSC measurements indicate that incorporation of minor PS units into PBSu markedly inhibits the crystallization of the resulting polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1299–1308, 2010  相似文献   

18.
Poly(ε‐caprolactone)‐grafted‐lignin (PCL‐g‐lignin) copolymers with 2 to 37 wt % lignin are employed to study the effect of lignin on the morphology, nucleation, and crystallization kinetics of PCL. Lignin displays a nucleating action on PCL chains originating an intersecting lamellar morphology. Lignin is an excellent nucleating agent for PCL at low contents (2–5 wt %) with nucleation efficiency values that are close to or >100%. This nucleating effect increases the crystallization and melting temperature of PCL under nonisothermal conditions and accelerates the overall isothermal crystallization rate of PCL. At lignin contents >18 wt %, antinucleation effects appear, that decrease crystallization and melting temperatures, reduce crystallinity degree, hinder annealing during thermal fractionation and significantly retard isothermal crystallization kinetics. The results can be explained by a competition between nucleating effects and intermolecular interactions caused by hydrogen bonding between PCL and lignin building blocks. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1736–1750  相似文献   

19.
The effect of nucleating agents on the polymorphic crystallization behavior of poly(butylene adipate) (PBA) was studied with four kinds of commercially available nucleating agents, such as talc and boron nitride. The crystal structures of the α and β forms were studied with wide‐angle X‐ray diffraction. The β‐to‐α‐crystal transformation of PBA in the absence and presence of the nucleating agents in isothermal crystallization and nonisothermal crystallization processes was studied with differential scanning calorimetry and polarized optical microscopy. In both isothermal and nonisothermal crystallization, the introduction of nucleating agents selectively initiated the nucleation of the α‐form crystal, which was relatively slow in the absence of nucleating agents. The nucleating activity of the four kinds of nucleating agents in the crystallization of the PBA α‐form crystal was determined by the study of the nonisothermal crystallization, spherulite morphology, and isothermal kinetics. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2340–2351, 2005  相似文献   

20.
A potassium salt of N‐chloroacetyl‐11‐aminoundecanoate was thermally polymerized to obtain the corresponding poly(glycolic acid‐alt‐11‐aminoundecanoic acid). A kinetic study was then performed that was based on isothermal and nonisothermal polymerizations performed in a differential scanning calorimeter. The complete kinetic triplet was determined (the activation energy, pre‐exponential factor, and integral function of the degree of conversion). A kinetic analysis was performed with an integral isoconversional procedure (free model), and the kinetic model was determined both with the Coats–Redfern method (the obtained isoconversional value being accepted as the effective activation energy) and through the compensation effect. The polymerization followed a three‐dimensional growth‐of‐nuclei (Avrami) kinetic mechanism. Isothermal polymerization was simulated with nonisothermal data. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1166–1176, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号