首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
本文报道了一种方便地构建铂/酞菁/碳纳米管(Pt/Pc/CNTs)复合纳米催化剂的新方法:先通过简单的超声处理将酞菁分子(Pc)修饰至碳纳米管表面,随后采用乙二醇还原法将铂纳米粒子固载到酞菁修饰的碳纳米管表面,形成Pt/Pc/CNTs复合纳米催化剂。X射线衍射(XRD)和透射电镜(TEM)结果表明金属铂纳米颗粒均匀地分散在碳纳米管表面,尺寸约5 nm。采用UV-Vis、FTIR和Raman等手段研究了这种复合纳米催化剂的构建过程,结果表明酞菁分子与碳纳米管之间存在较强的π-π相互作用,使其能牢固地吸附于碳  相似文献   

2.
为了提高金属纳米粒子在石墨烯片上的分散度,通过组氨酸功能化石墨烯量子点(His-GQD)作为桥梁,设计合成银铜双金属/His-GQD/石墨烯杂化物(AgCu/His-GQD/G)。His-GQD通过π-π堆积作用固定到氧化石墨烯上,然后与银离子和铜离子结合形成复合物,最后在氮气保护下热还原获得AgCu/His-GQD/G。形成的杂化物表现出独特的三维结构,且银、铜纳米粒子均匀分散在石墨烯片上。基于该杂化物构建了电化学适配体传感器,适配体与杂化物上的银、铜纳米粒子通过Ag-N和Cu-N键连接而修饰到电极表面上,用于毒死蜱、克百威和多菌灵的测定,表现出高的灵敏度和选择性。毒死蜱、克百威和多菌灵标准曲线的线性范围分别为1.00×10^(-2)~1.00×10^(3)pmol·L^(-1)、1.00×10^(-1)~1.00×10^(4)pmol·L^(-1)和1.00~1.00×10^(6)pmol·L^(-1),检出限(3S/N)分别为3.2×10^(-3)pmol·L^(-1)、2.3×10^(-2)pmol·L^(-1)和2.9×10^(-1)pmol·L^(-1)。该适配体传感器用于黄瓜样品中克百威、毒死蜱和多菌灵的测定,仅检出多菌灵,检出量为1.21 pmol·L^(-1)和1.25 pmol·L^(-1);并按标准加入法进行回收试验,回收率为99.3%~100%。  相似文献   

3.
采用一种温和且有效的方法,将聚丙烯酸非共价修饰到碳纳米管上,并以其为模板,在碳纳米管上原位均匀的生长铜纳米粒子,制备了铜/聚丙烯酸/碳纳米管(Cu/PAA/CNT)纳米复合材料,并以此材料构建了一种新型的非酶H2O2传感器,研究了其对H2O2的电催化行为。结果表明:铜纳米粒子较均匀的生长在碳纳米管上,制备的纳米复合材料修饰到电极表面对H2O2表现出良好的电流响应,可实现对H2O2的灵敏测定,其响应电流与H2O2的浓度在1.9×10-6~8.0×10-4mol/L范围内呈良好的线性关系,检测限达6.3×10-7mol/L。  相似文献   

4.
于浩  高小玲  徐娜  陈小霞  冯晓  金君 《分析测试学报》2016,35(11):1416-1421
采用过氧化氢刻蚀法制备石墨烯量子点(GQDs),再采用原位化学还原法制备金纳米粒子-石墨烯量子点纳米复合物(Au NPs-GQDs),最后以聚二甲基二烯丙基氯化铵(PDDA)为交联剂将上述纳米复合物组装于多壁碳纳米管表面,制得金纳米粒子-石墨烯量子点-PDDA-多壁碳纳米管复合材料(Au NPs-GQDsPDDA-MWCNTs)。通过荧光光谱法、紫外-可见吸收光谱法和透射电子显微镜对上述复合材料进行表征。采用滴涂法制得该复合材料修饰的玻碳电极,研究了过氧化氢在该电极上的电化学行为。结果表明:在石墨烯量子点、金纳米粒子和多壁碳纳米管三者的协同作用下,该电极对过氧化氢的电氧化表现出强的催化活性。在优化条件下,安培法检测H_2O_2的线性范围为2.0×10~(-8)~1.5×10~(-3)mol/L,检出限(3sb)为8.0×10~(-9)mol/L,灵敏度为61.6μA/(mmol·L~(-1))。  相似文献   

5.
本文通过在碳纳米管(MWNTs)表面原位自发还原形成普鲁士蓝纳米颗粒(PB),制备PB包覆的MWNTs纳米复合物(PB@MWNTs),并将其修饰于电极表面,直接催化过氧化氢,成功制得了一种无酶过氧化氢传感器。由于PB和MWNTs对过氧化氢都有较好的催化能力,使得制备的传感器具有好的性能。该传感器在H2O2浓度为1.8×10-7mol·L-1~4.2×10-3mol·L-1范围内,呈良好的线性,检测下限达到8.0×10-8mol·L-1(S/N=3),灵敏度为71.8A·L/mol/cm2。此外,传感器还表现出较好的稳定性、重现性和选择性  相似文献   

6.
以Na_2MoO_4·2H_2O为钼源,硫脲为硫源和还原剂,氧化多壁碳纳米管(o-MWNTs)和氧化石墨烯(GO)为原料,采用水热法合成了三维花状MoS_2/GO/o-MWNTs纳米复合材料,并进一步采用原位还原法将金纳米粒子修饰至MoS_2/GO/o-MWNTs纳米复合材料表面。通过场发射扫描电镜、透射电镜、XRD、XPS等对上述复合材料进行表征。结果表明,该复合纳米材料具有3D花状球结构,且Au纳米粒子已成功生长在其花瓣状片层上。采用滴涂法制得该复合材料修饰的玻碳电极,研究了过氧化氢在该电极上的电化学行为。结果表明:该电极对过氧化氢的电还原表现出强催化活性。通过对不同浓度过氧化氢的催化还原,得出该电极对过氧化氢的线性范围为12.0×10~(-9)~31.0×10~(-6) mol/L,灵敏度为56.6μA/(mmol·L~(-1)),检出限为12.0×10~(-9) mol/L。  相似文献   

7.
采用水合肼原位化学还原法制备了还原氧化石墨烯(rGO)-多壁碳纳米管(MWCNTs)复合物,将该复合物滴涂于玻碳电极表面,通过电化学方法向该复合膜表面沉积了纳米氧化铜(CuO),制得氧化铜-还原氧化石墨烯-多壁碳纳米管三元复合物修饰电极(CuO-rGO-MWCNTs/GCE)。通过扫描电镜、EDS能谱及电化学交流阻抗技术对该电极进行了表征。研究了L-酪氨酸(L-Tyr)在该修饰电极上的电化学行为。结果表明,CuO-rGO-MWCNTs/GCE对L-Tyr的电氧化表现出高的催化活性。在优化实验条件下,安培法检测L-Tyr的线性范围为2.0×10~(-8)~1.8×10~(-4)mol/L,检出限为5.0×10~(-9)mol/L(S/N=3)。  相似文献   

8.
将碳纳米管与纳米金结合修饰在金电极上制成修饰电极,并用于柔红霉素(DNR)的电化学行为研究和检测.在4.4 mmol/L磷酸盐缓冲溶液(pH=5.81)中,DNR在碳纳米管-纳米金/Au电极上有一对灵敏的氧化还原峰.还原峰电流与DNR的浓度在3.2×10-8~1.0×10-6mol/L和1.0× 10-6~2.2× 1...  相似文献   

9.
聚吡咯/亚铁氰化钾/碳纳米管修饰电极检测亚硝酸根   总被引:2,自引:1,他引:1  
采用循环伏安法在滴涂碳纳米管的电极表面制备了聚吡咯/K4Fe(CN)6复合膜,研究了该电极的电化学性质及对NO2-的电催化还原。结果表明,固定于聚吡咯膜中的K4Fe(CN)6作为电子递质与碳纳米管和聚吡咯对NO2-电还原具有协同催化作用,安培法检测NO2-的线性范围为1.5×10-6~1.8×10-3mol/L,检出限为3.0×10-7mol/L,该法已用模拟水样中NO-的测定。  相似文献   

10.
利用酸性条件下,牛血清白蛋白(BSA)可降低银纳米粒子-变色酸2R(CT2R)体系的表面增强荧光效应,建立了一种测定BSA的荧光分析新方法。考察了pH值、CT2R的浓度、银纳米粒子浓度、试剂加入顺序和共存物质等因素对测定BSA的影响。实验结果表明,在pH值为5.72,CT2R的浓度为1.5×10-5mol/L,银纳米粒子浓度(以银原子计算)为1.25×10-4mol/L,按银纳米粒子、BSA、CT2R、BR缓冲溶液依次添加的条件下,BSA的线性范围为0.02~1.00 mg/L,检出限为0.002 6 mg/L。该法用于合成样品中BSA的测定,灵敏度高,重现性好,结果准确。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号