首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
H ? C Bond Cleavage in Ferrocene by Organylruthenium Complexes Cp*(Me3P)2RuCH2CMe3 ( 1 ) reacts at 85°C with ferrocene ( 2 ) by cleavage of one H? C bond in 2 to give CpFe[η5-C5H4Ru(PMe3)2Cp*] ( 3 ) (Cp = η5-C5H5; Cp* = η5-C5Me5) and neopentane. The ruthenium atom in 3 has a distorted tetrahedral geometry, the planar Cp ligands in the ferrocenyl fragment are eclipsed. Solutions of 3 in [D6]benzene or [D8]THF exhibit H? D exchange of the ferrocenyl protons. In the [D8]THF molecule only the α-deuterium atoms are exchanged. Reaction pathways for this exchange are discussed.  相似文献   

3.
31P solid-state nuclear magnetic resonance (NMR) spectra of 12 metal-containing selenophosphates have been examined to distinguish between the [P(2)Se(6)](4-), [PSe(4)](3-), [P(4)Se(10)](4-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions. There is a general correlation between the chemical shifts (CSs) of anions and the presence of a P[bond]P. The [P(2)Se(6)](4-) and [P(4)Se(10)](4-) anions both contain a P[bond]P and resonate between 25 and 95 ppm whereas the [PSe(4)](3-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions do not contain a P[bond]P and resonate between -115 and -30 ppm. The chemical shift anisotropies (CSAs) of compounds containing [PSe(4)](3-) anions are less than 80 ppm, which is significantly smaller than the CSAs of any of the other anions (range: 135-275 ppm). The smaller CSAs of the [PSe(4)](3-) anion are likely due to the unique local tetrahedral symmetry of this anion. Spin-lattice relaxation times (T(1)) have been determined for the solid compounds and vary between 20 and 3000 s. Unlike the CS, T(1) does not appear to correlate with P-P bonding. (31)P NMR is also shown to be a good method for impurity detection and identification in the solid compounds. The results of this study suggest that (31)P NMR will be a useful tool for anion identification and quantitation in high-temperature melts.  相似文献   

4.
The aim of this study was to develop an analytical method for the determination the levels of metabolites of benzo[a]pyrene (B[a]P), 3‐hydroxybenzo(a)pyrene (3‐OHB[a]P) and (+)‐anti‐benzo(a)pyrene diol‐epoxide [(+)‐anti‐BPDE, combined with DNA to form adducts], in rat blood and tissues exposed to B[a]P exposure by high‐performance liquid chromatography with fluorescence detection (HPLC/FD), and to investigate the usefulness of 3‐OHB[a]P and (+)‐anti‐BPDE as markers of intragastrical exposure to B[a]P in rats. The levels of 3‐OH‐B[a]P and B[a]P‐tetrol I‐1 released after acid hydrolysis of (+)‐anti‐BPDE in the samples were measured by HPLC/FD. The calibration curves were linear (r2 > 0.9904), and the lower limit of quantification ranged from 0.34 to 0.45 ng/mL for 3‐OHB[a]P and from 0.43 to 0.58 ng/mL for (+)‐anti‐BPDE. The intra‐ and inter‐day stability assay data suggested that the method is accurate and precise. The recoveries of 3‐OHB[a]P and (+)‐anti‐BPDE were in the ranges of 73.6 ± 5.0 to 116.5 ± 6.3% and 73.3 ± 8.5 to 141.2 ± 13.8%, respectively. A positive correlation was found between the concentration of intragastrical B[a]P and the concentrations of 3‐OH‐B[a]P and (+)‐anti‐BPDE in the blood and in most of the tissues studied, except for the brain and kidney, which showed no correlation between B[a]P and 3‐OHB[a]P and between B[a]P and (+)‐anti‐BPDE, respectively. A sensitive, reliable and rapid HPLC/FD was developed and validated for analysis of 3‐OHB[a]P and (+)‐anti‐BPDE in rat blood and tissues. There was a positive correlation between the concentration of 3‐OHB[a]P or (+)‐anti‐BPDE in the blood and the concentration of 3‐OHB[a]P or (+)‐anti‐BPDE in the most other tissues examined. The concentration of 3‐OHB[a]P or (+)‐anti‐BPDE in the blood could be used as an indicator of the concentration of 3‐OHB[a]P or (+)‐anti‐BPDE in the other tissues in response to B[a]P exposure. These results demonstrate that 3‐OHB[a]P and (+)‐anti‐BPDE are potential biomarkers of B[a]P exposure, which would also be useful to assess the carcinogenic risks from B[a]P exposure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Complexes [Zn[Se(2)P(OEt)(2)](2)]( infinity ) (1) and [Zn(2)[Se(2)P(O(i)Pr)(2)](4)] (2) are prepared from the reaction of Zn(ClO(4))(2).6H(2)O and (NH(4))[Se(2)P(OR)(2)] (R = Et and (i)Pr) in a molar ratio of 1:2 in deoxygenated water at room temperature. Positive FAB mass spectra show m/z peaks at 968.8 (Zn(2)L(3)(+)) and 344.8 (ZnL(+)) for 1 and m/z at 1052.8 (Zn(2)L(3)(+)) for 2. (1)H NMR spectra exhibit chemical shifts at delta 1.43 and 4.23 ppm for 1 and 1.41 and 4.87 ppm for 2 due to Et and (i)Pr group of dsep ligands. While the solid-state structure of compound 1 is a one-dimensional polymer via symmetrically bridging dsep ligands, complex 2 in the crystalline state exists as a dimer. In both 1 and 2, zinc atoms are connected by two bridging dsep ligands with an additional chelating ligand at each zinc atom. The dsep ligands exhibit bimetallic biconnective (micro(2), eta(2)) and monometallic biconnective (eta(2)) coordination patterns. Thus, each zinc atom is coordinated by four selenium atoms from two bridging and one chelating dsep ligands and the geometry around zinc is distorted tetrahedral. The Zn-Se distances range between 2.422 and 2.524 A. From variable-temperature (31)P NMR studies it has been found that monomer and dimer of the complex are in equilibrium in solution via exchange of bridging and chelating ligands. However, at temperature above 40 degrees C the complex exists as a monomer and shows a very sharp peak while with lowering of the temperature the percentage of dimer increases gradually at the expense of monomer. Below -90 degrees C the complex exists as a dimer and two peaks are observed with equal intensities which are due to bridging and chelating ligands. (77)Se NMR spectra of both complexes at -30 degrees C exhibit three doublets due to the presence of monomer and dimer in solution.  相似文献   

6.
The two ionic compounds [Ph4P][NTf2] and Cs[NTf2] were qualified to be suitable liquid materials for different high temperature applications. Development and optimization of these application techniques require knowledge of the thermodynamic properties of vaporization. Vapor pressures and vaporization enthalpies have been measured by using quartz-crystal microbalance. Solubility parameters and miscibility of ionic liquids in practically relevant solvents were assessed.  相似文献   

7.
8.
[iPr2P]2P? SiMe3 and [iPr2P]2PLi – Synthesis and Reactions Structure of [iPr2P]2P? P[PiPr2]2 [iPr2P]2P? SiMe3 1 and [iPr2P]2PLi 2 were prepared to investigate the influence of the bulky alkyl groups on formation and properties of the ylides R2P? P?P(X)R2 (R = iPr, tBu; X = Br, Me) in reactions of 1 with CBr4 and of 2 with 1,2-dibromoethane or MeCl, resp. Compared to the iPr groups the tBu groups favour the formation of ylides. With CBr4 1 forms iPr2P? P?P(Br)iPr2 5 just as a minor product which decomposes already below ?30°C. With 1,2-dibromoethane 2 yields only traces of 5 but [iPr2P]P? P[P(iPr)2]2 7 as main product. With MeCl 2 gives iPrP? P?P(Me)iPr2 9 and [iPr2P]2PMe 10 in a molar ratio of 1:1. 9 is considerably more stable than 5. 7 crystallizes triclinic in the space group P1 (No. 2) with a = 10.813 Å, b = 11.967 Å, c = 15.362 Å, α = 67.90°, β = 71.36°, γ = 64.11° and two formula units in the unit cell.  相似文献   

9.
10.
Abstract

The lanthanide induced 31P and 13C shifts for calix[4]arenediphosphate 1 are studied. From these investigations an exact assignment of all the 48 C atoms was possible.  相似文献   

11.
12.
The homoleptic complexes [Ph(4)P](2)[Co[N(CN)(2)](4)] and [Ph(4)P][M[N(CN)(2)](3)] [M = Co, Mn] have been structurally as well as magnetically characterized. The complexes containing [M[N(CN)(2)](4)](2-) form 1-D chains, which are bridged via a common dicyanamide ligand in [M[N(CN)(2)](3)](-) to form a 2-D structure. The five-atom [NCNCN](-) bridging ligands lead to weak magnetic coupling along a chain. The six [NCNCN](-) ligands lead to a (4)T(1g) ground state for Co(II) which has an unquenched spin-orbit coupling that is reflected in the magnetic properties. Long-range magnetic ordering was not observed in any of these materials.  相似文献   

13.
The phase diagram of the system [Ph4P]Br/BiBr3 was investigated with the aid of DSC, TG and temperature dependent X‐ray powder diffraction measurements. By varying the reaction conditions, stoichiometry and crystallisation conditions of the reaction between BiBr3 and [Ph4P]Br four polynuclear bromobismuthates are formed. We report here the crystal structure of the solvation product [Ph4P]3[Bi2Br9] · CH3COCH3, which crystallises with monoclinic symmetry in the S. G. P21/n No. 14, a = 12.341(1), b = 32.005(3), c = 19.929(3) Å, β = 99.75(2)°, V = 7758(7) Å3, Z = 4 and the crystal structures of two modifications of the compound [Ph4P]4[Bi6Br22]. The α‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.507(4) Å, b = 14.434(4) Å, c = 17.709(5) Å, α = 81.34(2)°, β = 72.42(2)°, γ = 72.53(2)°, V = 3132.7(1) Å3, Z = 2. The high‐temperature β‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.893(4) Å, b = 14.267(3) Å, c = 16.580(3), α = 100.13(2)°, β = 96.56(2)°, γ = 110.01(2)°, V = 2985.5(1) Å3, Z = 2. Lattice parameters of [Ph4P]4[Bi8Br28] are also given. The thermal behaviour of the compounds and in addition the vibrational spectra of [Ph4P]3[Bi2Br9] · CH3COCH3 are presented and discussed.  相似文献   

14.
[structure: see text] Post-assembly covalent modification using Wittig chemistry of [2]rotaxane ylides, wherein NH(2)(+) centers in the dumbbell-shaped components are recognized by dibenzo[24]crown-8 (DB24C8) rings, has afforded a [3]catenane and a [3]rotaxane with a precise and synthetically prescribed shortage of DB24C8 rings. The nondegenerate pairs of translational isomers present in both of these interlocked molecular compounds provide the fundamental platform on which to construct sensory devices and nanochemomechanical systems.  相似文献   

15.
16.
Treatment of P(X)(X')Cl with KC8 gave the crystalline diphosphine [P(X)X']2 (1) which dissociated reversibly into the phosphinyl radical *P(X)X' (2), a plausible intermediate in the reaction of with [Cr(CO)6], [Co(NO)(CO)3] or P4, yielding [Cr[P(X)X']2(CO)3] (3), [Co[P(X)X'](CO)3] (4), or 1,4-P4[P(X)X']2 (5); the P(X)X' substituent is pyramidal at P in but planar in [X = N(SiMe3)2, X'= NPri2].  相似文献   

17.
18.
19.
The synthesis of several [1]benzothieno[2,3-e]pyrrolo[1,2-a]pyrazines and other related heterocycles has been described. A study of the nmr spectra of these compounds was also reported.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号