首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A series of novel 6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐7‐phenylpyrazolo[1,5‐a]pyrimidines, 5‐phenyl‐6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]imidazo[1,2‐a]pyrimidines, and 2‐phenyl‐3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]pyrimido[1,2‐a]benzimidazoles have been synthesized in four steps starting with 2‐hydroxyacetophenone. The intermediate 3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐4H‐1‐benzopyran‐4‐ones reacted with pyrazol‐3‐amines, 5‐methylpyrazol‐3‐amine, and 1H‐imidazol‐2‐amine, 1H‐benzimidazol‐2‐amine via a cyclocondensation to give the title compounds in the presence of MeONa as base, respectively. The approach affords the target compounds in acceptable‐to‐good yields. The new compounds were characterized by their IR, NMR, and HR mass spectra.  相似文献   

2.
A series of novel fused tetracyclic benzo[4,5]imidazo[1,2‐a]thiopyrano[3,4‐d]pyrimidin‐4(3H)‐one derivatives were synthesized via the reaction of aryl aldehyde, 2H‐thiopyran‐3,5(4H,6H)‐dione, and 1H‐benzo[d]imidazol‐2‐amine in glacial acetic acid. This protocol features mild reaction conditions, high yields and short reaction time.  相似文献   

3.
Superparamagnetic nanoparticles of modified thioglycolic acid (γ‐Fe2O3@SiO2‐SCH2CO2H) represent a new, efficient and green catalyst for the one‐pot synthesis of novel spiro[benzo[a ]benzo[6,7]chromeno[2,3‐c ]phenazine] derivatives via domino Knoevenagel–Michael–cyclization reaction of 2‐hydroxynaphthalene‐1,4‐dione, benzene‐1,2‐diamines, ninhydrin and isatin. This novel magnetic organocatalyst was easily isolated from the reaction mixture by magnetic decantation using an external magnet and reused at least six times without significant loss in its activity. The catalyst was fully characterized using various techniques. This procedure was also applied successfully for the synthesis of benzo[a ]benzo[6,7]chromeno[2,3‐c ]phenazines.  相似文献   

4.
Quinoline and isoquinoline react with 2‐(bromoacetyl)benzothiazole ( 1 ) in dry benzene to give the corresponding quinolinium and isoquinolinium salts 2 and 10 which undergo base‐mediated [3+2] 1,3‐dipolar cycloaddition with some acetylene and ethylene derivatives to give the corresponding benzothiazole‐containing pyrrolo[1,2‐a]quinoline and pyrrolo[2,1‐a]isoquinoline derivatives.  相似文献   

5.
Benzo[a ]pyrene, which is produced during the incomplete combustion of organic material, is an abundant noxious pollutant because of its carcinogenic metabolic degradation products. The high‐affinity (K D≈3 nm ) monoclonal antibody 22F12 allows facile bioanalytical quantification of benzo[a ]pyrene even in complex matrices. We report the functional and X‐ray crystallographic analysis of 22F12 in complex with 3‐hydroxybenzo[a ]pyrene after cloning of the V‐genes and production as a recombinant Fab fragment. The polycyclic aromatic hydrocarbon is bound in a deep pocket between the light and heavy chains, surrounded mainly by aromatic and aliphatic amino acid side chains. Interestingly, the hapten–antibody interface is less densely packed than expected and reveals polar, H‐bond‐like interactions with the polycyclic aromatic π‐electron system, which may allow the antibody to maintain a large, predominantly hydrophobic binding site in an aqueous environment while providing sufficient complementarity to its ligand.  相似文献   

6.
The condensation of malonoaldehyde derivatives with either a 3‐amino‐[1,2,4]‐triazole or a 3,5‐diamino‐[1,2,4]‐triazole precursor was studied. In agreement with previous reports, two different bicycles, namely, bearing the regioisomeric [1,2,4]triazolo[1,5‐a]pyrimidine ( 1 ) or[1,2,4] triazolo [4,3‐a]pyrimidine ( 2 ) structural surrogates, could be obtained. We found that, depending on the triazole precursor, only one regioisomer resulted, either of the 1 or 2 series. We also observed that these two structural surrogates could be unambiguously differentiated by indirectly measuring their 15N chemical shifts by 1H? 15N HMBC experiments. The occasional conversion of [1,2,4]triazolo[4,3‐a]pyrimidines to the [1,2,4]triazolo[1,5‐a]pyrimidine counterparts could be unequivocally determined by 15N NMR data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The oxidation of benzo[a]azulene ( 4 ) with commercial MnO2 in dioxane/H2O leads to a number of products in low yield (Table 1). Treatment of 4 with ‘mild’ MnO2 (MnO2/C) in dioxane/5% H2O results in the formation of 10,10′‐bibenzo[a]azulene ( 18 ) in yields of up to 59% of isolated and purified material. Compound 18 exhibits atropisomerism and can be separated by HPLC on a Chiralcel column at room temperature into its stable antipodes (Fig.).  相似文献   

8.
A new four‐component synthesis of spiro[4H‐indeno[1,2‐b]pyridine‐4,3′‐[3H]indoles] and spiro[acenaphthylene‐1(2H),4′‐[4H‐indeno[1,2‐b]pyridines] by the reaction of indane‐1,3‐dione, 1,3‐dicarbonyl compounds, isatins (=1H‐indole‐2,3‐diones) or acenaphthylene‐1,2‐dione, and AcONH4 in refluxing toluene in the presence of a catalytic amount of pyridine is reported.  相似文献   

9.
1H‐imidazol[1,2‐a]indeno[2,1‐e]pyridine‐6(5H)‐ones derivatives were synthesized in a one‐pot four‐component condensation of corresponding aldehydes, 1,3‐indandione, diamine, and nitro ketene dithioacetal using KAl(SO4)2·12H2O (alum) as nontoxic, reusable, inexpensive and easily available catalyst in good to excellent yields. This green protocol provides a powerful entry into fused polycyclic structures related to bioactive heterocycles.  相似文献   

10.
It is shown in this ‘Part 2’ that heptaleno[1,2‐c]furans 1 react thermally in a Diels–Alder‐type [4+2] cycloaddition at the furan ring with vinylene carbonate (VC), phenylsulfonylallene (PSA), α‐(acetyloxy)acrylonitrile (AAN), and (1Z)‐1,2‐bis(phenylsulfonyl)ethene (ZSE) to yield the corresponding 1,4‐epoxybenzo[d]heptalenes (cf. Schemes 1, 5, 6, and 8). The thermal reaction of 1a and 1b with VC at 130° and 150°, respectively, leads mainly to the 2,3‐endo‐cyclocarbonates 2,3‐endo‐ 2a and ‐ 2b and in minor amounts to the 2,3‐exo‐cyclocarbonates 2,3‐exo‐ 2a and ‐ 2b . In some cases, the (P*)‐ and (M*)‐configured epimers were isolated and characterized (Scheme 1). Base‐catalyzed cleavage of 2,3‐endo‐ 2 gave the corresponding 2,3‐diols 3 , which were further transformed via reductive cleavage of their dimesylates 4 into the benzo[a]heptalenes 5a and 5b , respectively (Scheme 2). In another reaction sequence, the 2,3‐diols 3 were converted into their cyclic carbonothioates 6 , which on treatment with (EtO)3P gave the deoxygenated 1,4‐dihydro‐1,4‐epoxybenzo[d]heptalenes 7 . These were rearranged by acid catalysis into the benzo[a]heptalen‐4‐ols 8a and 8b , respectively (Scheme 2). Cyclocarbonate 2,3‐endo‐ 2b reacted with lithium diisopropylamide (LDA) at ?70° under regioselective ring opening to the 3‐hydroxy‐substituted benzo[d]heptalen‐2‐yl carbamate 2,3‐endo‐ 9b (Scheme 3). The latter was O‐methylated to 2,3‐endo‐(P*)‐ 10b . The further way, to get finally the benzo[a]heptalene 13b with MeO groups in 1,2,3‐position, could not be realized due to the fact that we found no way to cleave the carbamate group of 2,3‐endo‐(P*)‐ 10b without touching its 1,4‐epoxy bridge (Scheme 3). The reaction of 1a with PSA in toluene at 120° was successful, in a way that we found regioisomeric as well as epimeric cycloadducts (Scheme 5). Unfortunately, the attempts to rearrange the products under strong‐base catalysis as it had been shown successfully with other furan–PSA adducts were unsuccessful (Scheme 4). The thermal cycloaddition reaction of 1a and 1b with AAN yielded again regioisomeric and epimeric adducts, which could easily be transformed into the corresponding 2‐ and 3‐oxo products (Scheme 6). Only the latter ones could be rearranged with Ac2O/H2SO4 into the corresponding benzo[a]heptalene‐3,4‐diol diacetates 20a and 20b , respectively, or with trimethylsilyl trifluoromethanesulfonate (TfOSiMe3/Et3N), followed by treatment with NH4Cl/H2O, into the corresponding benzo[a]heptalen‐3,4‐diols 21a and 21b (Scheme 7). The thermal cycloaddition reaction of 1 with ZSE in toluene gave the cycloadducts 2,3‐exo‐ 22a and ‐ 22b as well as 2‐exo,3‐endo‐ 22c in high yields (Scheme 8). All three adducts eliminated, by treatment with base, benzenesulfinic acid and yielded the corresponding 3‐(phenylsulfonyl)‐1,4‐epoxybenzo[d]heptalenes 25 . The latter turned out to be excellent Michael acceptors for H2O2 in basic media (Scheme 9). The Michael adducts lost H2O on treatment with Ac2O in pyridine and gave the 3‐(phenylsulfonyl)benzo[d]heptalen‐2‐ones 28a and 3‐exo‐ 28b , respectively. Rearrangement of these compounds in the presence of Ac2O/AcONa lead to the formation of the corresponding 3‐(phenylsulfonyl)benzo[a]heptalene‐1,2‐diol diacetates 30a and 30b , which on treatment with MeONa/MeI gave the corresponding MeO‐substituted compounds 31a and 31b . The reductive elimination of the PhSO2 group led finally to the 1,2‐dimethoxybenzo[a]heptalenes 32a and 32b . Deprotonation experiments of 32a with t‐BuLi/N,N,N′,N′‐tetramethylethane‐1,2‐diamine (tmeda) and quenching with D2O showed that the most acid C? H bond is H? C(3) (Scheme 9). Some of the new structures were established by X‐ray crystal‐diffraction analyses (cf. Figs. 1, 3, 4, and 5). Moreover, nine of the new benzo[a]heptalenes were resolved on an anal. Chiralcel OD‐H column, and their CD spectra were measured (cf. Figs. 8 and 9). As a result, the 1,2‐dimethoxybenzo[a]heptalenes 32a and 32b showed unexpectedly new Cotton‐effect bands just below 300 nm, which were assigned to chiral exciton coupling between the heptalene and benzo part of the structurally highly twisted compounds. The PhSO2‐substituted benzo[a]heptalenes 30b and 31b showed, in addition, a further pair of Cotton‐effect bands in the range of 275–245 nm, due to chiral exciton coupling of the benzo[a]heptalene chromophore and the phenylsulfonyl chromophore (cf. Fig. 10).  相似文献   

11.
The reactions of 3‐phenyl‐1‐azabicyclo[1.1.0]butane ( 4 ) with dimethyl dicyanofumarate ((E)‐ 8 ) and dimethyl dicyanomaleate ((Z)‐ 8 ) lead to the same mixture of cis‐ and trans‐4‐phenyl‐1‐azabicyclo[2.1.1]hexane 2,3‐dicarboxylates (cis‐ 11 and trans‐ 11 , resp.; Scheme 3). This result of a formal cycloaddition to the central C? N bond of 4 is interpreted by a stepwise reaction mechanism via a relatively stable zwitterionic intermediate 10 , which could be intercepted by morpholine to give a 1 : 1 : 1 adduct 12 , which undergoes a spontaneous elimination of HCN to yield the fumarate 13 (Scheme 4).  相似文献   

12.
Different derivatives of a novel heterocyclic system, i.e., pyrimido[4,5‐d] [1,2,4]triazolo[4,3‐a]pyrimidine, are synthesized in moderate‐to‐good yields. These compounds exhibit excellent photochromism upon photoirradiation. The photophysical characterizations of these new compounds were evaluated by UV/VIS absorption and fluorescence emission studies. The emission spectra in various solvents are also presented and discussed. The changes are due to the intramolecular H‐bonding of pyrimido‐triazolo‐pyrimidine with H2O, and photoinduced electron and general solvent effect. These compounds display high fluorescence quantum yields and are reported as new fluorophores.  相似文献   

13.
Two series of 7‐arylazo‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)pyrazolo[5,1‐c][1,2,4]triazol‐6(5H)‐ones 4 and 7‐arylhydrazono‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazines 7 were prepared via reactions of 4‐amino‐3‐mercapto‐5‐(2‐methyl‐1H‐indol‐3‐yl)‐1,2,4‐triazole 1 with ethyl arylhydrazono‐chloroacetate 2 and N‐aryl‐2‐oxoalkanehydrazonoyl halides 5 , respectively. A possible mechanism is proposed to account for the formation of the products. The biological activity of some of these products was also evaluated.  相似文献   

14.
Ionic liquids were found to be a suitable reaction medium for 1,4‐dipolar cycloaddition reactions of an isoquinoline, an activated alkyne, and a 4‐oxo‐4H‐1‐benzopyran‐3‐carboxaldehyde at room temperature to afford [1]benzopyrano‐pyrido‐isoquinoline (=9aH,15H‐benzo[a][1]benzopyrano[2,3‐h]quinolizine) derivatives selectively in good yields. The ionic liquid can be recovered and recycled in further runs without loss of activity.  相似文献   

15.
A series of heterocycle‐substituted acetophenones were prepared and reacted with the Brønsted superacid CF3SO3H (triflic acid=trifluoromethanesulfonic acid). Cyclodehydration provided aryl‐substituted imidazo[2,1‐a]isoquinolines and related products (28–85%, seven examples). A mechanism is proposed involving dicationic intermediates.  相似文献   

16.
An efficient one‐pot synthesis of 5‐(trifluoromethyl)‐4,7‐dihydro‐7‐aryl‐[1,2,4]triazolo[1,5‐a]pyrimidine derivatives was performed via the reaction of aryl aldehyde, 3‐amino‐1,2,4‐triazole and ethyl 4,4,4‐trifluoro‐3‐oxobutanoate or 4,4,4‐trifluoro‐1‐phenylbutane‐1,3‐dione in ionic liquid. This method has the advantages of short synthetic route, operational simplicities, mild reaction conditions, high yields and eco‐friendliness.  相似文献   

17.
Benzo[a]pyrene is a major carcinogen implicated in human lung cancer. Almost 60% of human lung cancers have a mutation in the p53 tumor suppressor gene at several specific codons. An on‐line nanoLC/MS/MS method using a monolithic nanocolumn was applied to investigate the chemoselectivity of the carcinogenic diol epoxide metabolite, ( ± )‐(7R,8S,9S,10R)‐benzo[a]pyrene 7,8‐diol 9,10‐epoxide [( ± )‐anti‐benzo[a]pyrene diol epoxide (BPDE)], which was reacted in vitro with a synthesized 14‐mer double stranded oligonucleotide (5′‐ACCCG5CG7TCCG11CG13C‐3′/5′‐GCGCGGGCGCGGGT‐3′) derived from the p53 gene. This sequence contained codons 157 and 158, which are considered mutational ‘hot spots’ and have also been reported as chemical ‘hot spots’ for the formation of BPDE‐DNA adducts. In evaluating the effect of cytosine methylation on BPDE‐DNA adduct binding, it was found that codon 156, containing the nucleobase G5 instead of the mutational hot spot codons 157 (G7) and 158 (G11), was the preferential chemoselective binding site for BPDE. In all permethylated cases studied, the relative ratio for adduction was found to be G5? G11 > G13 > G7. Permethylation of CpG dinucleotide sites on either the nontranscribed or complementary strand did not change the order of sequence preference but did enhance the relative adduction level of the G11 CpG site (codon 158) approximately two‐fold versus the unmethylated oligomer. Permethylation of all CpG dinucleotide sites on the duplex changed the order of relative adduction to G5? G7 > G11 > G13. The three‐ to four‐fold increase in adduction at the mutational hot spot codon 157 (G7) relative to the unmethylated or single‐stranded permethylated cases suggests a possible relationship between the state of methylation and adduct formation for a particular mutation site in the p53 gene. Using this method, only 125 ng (30 pmol) of adducted oligonucleotide was analyzed with minimal sample cleanup and high chromatographic resolution of positional isomers in a single chromatographic run. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Some inimitable and therapeutic coumarin‐substituted fused[1,2,4]triazolo‐[3,4‐b][1,3,4]thiadizole derivatives were synthesized by the cyclocondensation reaction of 2‐oxo‐2H‐chromene‐3‐carboxylic acid ( 1 ) and 4‐amino‐5‐hydrazinyl‐4H‐[1,2,4]‐triazole‐3‐thiol ( 2 ) by using phosphorous oxychloride as a cyclizing agent. This cyclized intermediate 3‐(3‐hydrazino‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐chromen‐2‐one ( 3 ) later condensation with various ethyl 2‐(2‐arylhydrazono)‐3‐oxobutanoates ( 4 ) in NaOAc/MeOH under reflux conditions afforded the corresponding new series of aryl‐substituted hydrazono‐pyrazolyl‐[1,2,4]triazolo[3,4‐b][1,3,4][thiadiazol]‐coumarin derivatives ( 5 ) in good to excellent yields. The structures of newly synthesized compounds were established on the basis of elemental analysis, IR, 1H NMR and mass spectroscopic studies.  相似文献   

19.
2-Thioxo-1,2-dihydropyridine derivatives 2a, 2b were reacted with methyl iodide to give 2-methylthiopyridines 3a, 3b, which were reacted with hydrazine hydrate to produce 3-aminopyrazolo[5,4-b]pyridines 4a, 4b. Compounds 4a, 4b were diazotized to afford the corresponding diazonium salts 5a, 5b, which were reacted with some active methylene compounds 6a-6h to give the corresponding pyrido[2′,3′ : 3,4]pyrazole[5,1-c][1,2,4]triazines 7-14.  相似文献   

20.
With a variation in reaction conditions, 1, 4‐bis (2‐(2‐chloroethoxy)ethoxy)‐calix[6]arene (3) and l,3,5‐tris(2‐(2‐chloroethoxy) ethoxy)‐calix [6] arene (4) or 4 and 4‐chloroethoxyethoxy‐calix[6]crown‐3 (5) were selectively synthesized from p‐tert‐butyl‐calix [6] arene and 2‐(2‐chloroethoxy)ethyltosylate. l,3–4,6‐p‐tert‐butylcalix[6]‐bis‐crown‐3 (6) with (u,u,u,d,d,d) conformation and 1,3–4,5‐p‐tert‐butylcalix[6]‐biscrown‐3 (7) with self‐anchored (u,u, u, u, u, d) conformation were synthesized through an intramolecularly ring‐closing condensation of 1, 4‐bis (2‐(2‐chloroethoxy)ethoxy)‐p‐tert‐butyl‐calix[6]arene (3) in 25% and 15% yield, respectively. Using 5 instead of 3, only 7 was obtained in 65% high yield. 6 and 7 show different complexation properties toward alkali metal and ammonium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号