首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Treatment of copper(I) chloride with R2Si(NLiPh)2 (R = Me, Ph) in thf led to the formation of the octanuclear cluster compounds [Cu8{(R2Si(NPh)2}4] [R = Me ( 1 ), Ph ( 2 ).] Compound 1 crystallizes in the tetragonal space group P4/n, with a = 1505.41(5) and c = 1911.32(7) pm. The X‐ray crystal structure determination revealed a cube shaped Cu8 cluster core with μ4 bridging Me2Si(NPh)22– ligands. The copper atoms display an almost linear coordination with Cu–N distances in the range of 191.1(3)–191.4(3) pm. The Cu–Cu distances are 265.7(1)–267.3(1) pm. Compound 2 forms monoclinic crystals, space group P21/n, with a = 1461.87(4), b = 2483.77(6), c = 2725.49(8) pm, β = 100.77(1)°. The cluster core of compound 2 consists formally of two mutually perpendicular arranged trigonal prisms, which share a common square face. Like in the case of compound 1 the square faces of the cluster core are capped by μ4 bridging Ph2Si(NPh)22– ligands. The copper atoms adopt a nearly linear N–Cu–N coordination with Cu–N distances of 190.0(4)–195.1(4) pm. The Cu–Cu distances are 252.3(1)–305.6(1) pm.  相似文献   

2.
Treatment of molybdenum(II) acetate with thioether functionalized silylamides R2Si(NLi-C6H4–2-SR')2 leads to the formation of dinuclear MoII complexes [Mo2{R2Si(NC6H4-2-SR')2}2]. According to X-ray crystal structure analyses the complexes [Mo2{Me2Si(NC6H4-2-SMe)2}2] and [Mo2{Ph2Si(NC6H4-2-SPh)2}2] comprise a Mo2-unit which is coordinated by two μ-κ-N,N' silylamide ligands. The coordination sphere around the molybdenum atoms consists of two amide nitrogen atoms and two thioether sulfur atoms in a distorted square-planar arrangement. The Mo-Mo distances are 211.0(1) and 211.7(1) pm, resp. In the complex [Mo2{Ph2Si(NC6H4-2-SMe)2}2] the silyl amide units act as tetradentate κ-N,N',S,S'chelating ligands and the Mo-Mo distance is 218.6(1) pm.  相似文献   

3.
The reaction of ECl3 (E = Al, Ga) with two equivalentsof Li2Me2Si(NPh)2 (in diethyl ether/n‐hexane) leads to the formation of bis‐chelate complexes [Li(OEt2)3][E{Me2Si(NPh)2}2] (E = Al ( 1 ), Ga ( 2 )). Compounds 1 and 2 crystallize isotypically in the monoclinic system with a = 1136.42(6), b = 3267.9(1), c = 1360.37(8) pm, β = 94.320(7)° for 1 and a = 1140.88(6), b = 3261.7(2), c = 1360.20(8) pm, β = 94.641(7)° for 2 . Both the compounds display a distorted tetrahedral coordination of the central metal atom to give a spirocyclic EN4Si2 core. The Al–N bond lengths are in the range of186.5–186.9 pm and for the Ga–N distances values between 192.3and 193.1 pm are observed. Treatment of InCl3 with three equivalents of Li2Me2Si(NPh)2 yields the tris‐chelate [{Li(OEt2)}3In{Me2Si(NPh2)}3] 3 . Compound 3 crystallizes in the trigonal crystal system , space group R$\bar{3}$ c with a = 1852.4(1), and c = 3300.2(2) pm. The central indium atom is coordinated by threeMe2Si(NPh)22– ligands in a distorted octahedral arrangement withIn–N bond lengths of 230.8 pm.  相似文献   

4.
The triangular six-electron cluster complex [Mo3S4Cl4(PEt3) x (thf)5] produced by the excision reaction of Mo3S7Cl4 with triethypholsphine is reduced by magnesium at – 20°C. Subsequent addition of dppe (=1,2-his(diphenylphosphino)ethane) to the reduced species affords a seven-electron triangular cluster complex [Mo3S4Cl3(dppe)2(PEt3)]. The complex crystallizes in the space groupCm witha=17.170(6),b-19.878(6),c = 13.289(5) = 121.73(2)°,V = 3858(2) A3, andZ = 2. The structure shows an almost equilateral triangle of three molybdenum atoms capped by a Sulfur atom and bridged by three sulfur atoms. The Mo Mo distances, ranging from 2.804(1) to 2.809(1) A are elongated ca. 0.04 A as compared with lose of a six-electron cluster complex with drape ligands. Two molybdenum atoms have a chlorine and a dppe ligands, and the other molybdenum atom bas a chlorine and a triethylphosphine ligands. The UV-Vis spectrum has a characteristic broad hand centered at 1410 n m, which is not observed for six-electron clusters. The ESR spectrum indicates the presence of an unpaired electron consistent with the formulation of the compound as a seven-electron cluster.Dedicated to Professor fiaxi Lu on the occasion of his 80th birthday.  相似文献   

5.
The asymmetric molybdenum(VI) dioxo complexes of the bis(phenolate) ligands 1,4‐bis(2‐hydroxybenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐methylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐dimethylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐di‐tert‐butylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐flurobenzyl)‐1,4‐diazepane, and 1,4‐bis(2‐hydroxy‐4‐chlorobenzyl)‐1,4‐diazepane (H2(L1)–H2(L6), respectively) have been isolated and studied as functional models for molybdenum oxotransferase enzymes. These complexes have been characterized as asymmetric complexes of type [MoO2(L)] 1–6 by using NMR spectroscopy, mass spectrometry, elemental analysis, and electrochemical methods. The molecular structures of [MoO2(L)] 1–4 have been successfully determined by single‐crystal X‐ray diffraction analyses, which show them to exhibit a distorted octahedral coordination geometry around molybdenum(VI) in an asymmetrical cis‐β configuration. The Mo? Ooxo bond lengths differ only by ≈0.01 Å. Complexes 1 , 2 , 5 , and 6 exhibit two successive MoVI/MoV (E1/2, ?1.141 to ?1.848 V) and MoV/MoIV (E1/2, ?1.531 to ?2.114 V) redox processes. However, only the MoVI/MoV redox couple was observed for 3 and 4 , suggesting that the subsequent reduction of the molybdenum(V) species is difficult. Complexes 1 , 2 , 5 , and 6 elicit efficient catalytic oxygen‐atom transfer (OAT) from dimethylsulfoxide (DMSO) to PMe3 at 65 °C at a significantly faster rate than the symmetric molybdenum(VI) complexes of the analogous linear bis(phenolate) ligands known so far to exhibit OAT reactions at a higher temperature (130 °C). However, complexes 3 and 4 fail to perform the OAT reaction from DMSO to PMe3 at 65 °C. DFT/B3LYP calculations on the OAT mechanism reveal a strong trans effect.  相似文献   

6.
Sn4.4Mo24O38     
The single‐crystal structure of tetratin tetracosa­molybdenum octatriaconta­oxide, Sn4.4Mo24O38, contains infinite chains of centrosymmetric dioctahedral Mo10 and centrosymmetric trioctahedral Mo14 clusters. These clusters, as well as the O atoms, the arrangement of which derives from a closest‐packing with the layer sequence …ABAC…, form sheets parallel to the ac plane of the monoclinic unit cell. The Mo—Mo distances range from 2.6225 (7) to 2.8212 (9) Å and from 2.6270 (7) to 2.8365 (7) Å in the Mo10 and Mo14 clusters, respectively. The Mo—O distances vary between 1.949 (4) and 2.151 (4) Å in the Mo10 cluster and between 1.938 (4) and 2.140 (4) Å in the Mo14 cluster. The three crystallographically independent Sn2+ ions are off the centre of distorted oxy­gen octahedra.  相似文献   

7.
Oxophthalocyaninato(2–)molybdenum(IV), activated by bromine oxidation prior to use, reacts with fused triphenylphosphine in the presence of bis(triphenylphosphine)iminium bromide to yield linear-bis(triphenylphosphine)iminium trans-dibromophthalocyaninato(2–)molybdate(III), l(PNP)trans[Mo(Br)2pc2?]. It crystallizes triclinic with crystal data: a = 10.506(1) Å, b = 12.436(2) Å, c = 12.918(2) Å, α = 76.186(1)°, β = 67.890(1)°, γ = 68.689(1)°; space group P1 (No. 2); Z = 1. MoIII is in a pseudo-octahedral coordination geometry with the bromo ligands in trans-arrangement. The Mo? Np and Mo? Br distance is 2.043(10) and 2.588(1) Å, respectively. The PNP cation adopts a linear conformation. In the IR spectrum vas(Mo? Br) is observed at 218 cm?1 and vas(P? N) of the linear (P? N? P) core at 1406 cm?1. Cyclic and differential-pulse voltammetry show two quasi-reversible cathodic processes at ?1.15 and ?0.53 V vs. Ag/AgCl. The first is assigned to a phthalocyaninate directed reduction (pc2?/pc3?), while the latter arises from a Mo directed reduction (MoIII/MoII). Spectral monitoring confirms the reversible MoIII/MoII reduction. Two quasi-reversible anodic processes at 0.60 and 1.27 V are assigned to the successive Mo directed oxidation with redox couples MoIII/MoIV and MoIV/MoV. For the first time, three very intense spin-allowed trip-quartet transitions are observed in the electronic absorption spectra at 7140 (TQI), 16890 (TQ2) and 18700 cm?1 (TQ3) together with a sing-quartet transition at 15850 cm?1 and characteristic ?Q”? region with maximum at 28500 cm?1 and ?N”? region at 37400 cm?1. All electronic excitations are of comparable intensity. A prominent low temperature emission at 6690 cm?1 is assigned to a spin-forbidden trip-sextet.  相似文献   

8.
N,N -Dimethylglycinato Complexes of Platinum(IV) The aquapentachloroplatinic acid (H3O)-[PtCl5(H2O)] · 2(18-cr-6) · 6 H2O ( 1 ) reacts with N,N-dimethylglycine (Me2glyH) to give cis-[PtCl2(N,O-Me2gly)2] · (18-cr-6) ( 6 ) and (Me2glyH2)[PtCl4(N,O-Me2gly)] ( 7 ). Complexes 6 and 7 are characterized by microanalysis, 1H-NMR and IR spectroscopy as well as by X-ray structure analysis. In both complexes the N,N-dimethylglycinato ligands are N,O-coordinated. In 6 , the amino groups are mutually trans and the carboxylato groups are cis (configuration index: OC-6–22). In the crystal, there are only weak C–H…O interactions between the N-methyl groups of the [PtCl2(N,O-Me2gly)2] complex and the oxygen atoms of the crown ether (shortest C…O contacts: 3.10(2) Å and 3.21(2) Å). In the solid state, 7 exhibits strong cation-anion interactions: The carboxyl group of the cation (Me2glyH2)+ forms a strong O–H…O bridge to the exocyclic oxygen atom of the carboxylate group of the glycinato ligand (O…O 2.61(1) Å).  相似文献   

9.
The reactions of trans-[MoO(ONOMe)Cl2] 1 (ONOMe = methylamino-N,N-bis(2-methylene-4,6-dimethylphenolate) dianion) and trans-[MoO(ONOtBu)Cl2] 2 (ONOtBu = methylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenolate) dianion) with PhNCO afforded new imido molybdenum complexes trans-[Mo(NPh)(ONOMe)Cl2] 3 and trans-[Mo(NPh)(ONOtBu)Cl2] 4, respectively. As analogous oxotungsten starting materials did not show similar reactivity, corresponding imido tungsten complexes were prepared by the reaction between [W(NPh)Cl4] with aminobis(phenol)s. These reactions yielded cis- and trans-isomers of dichloro complexes [W(NPh)(ONOMe)Cl2] 5 and [W(NPh)(ONOtBu)Cl2] 6, respectively. The molecular structures of 4, cis-6 and trans-6 were verified by X-ray crystallography. Organosubstituted imido tungsten(VI) complex cis-[W(NPh)(ONOtBu)Me2] 7 was prepared by the transmetallation reaction of 6 (either cis or trans isomer) with methyl magnesium iodide.  相似文献   

10.
Synthesis and X-Ray Structure Analysis of Bis(2,2,6,6-tetramethylpiperidine-1-oxidato-O,N)molybdenum (VI) Dioxide The title compound ( 1 ) was synthesized by a photoreaction of the 2,2,6,6-tetramethylpiperidin-1-oxyl [TMPO] radical with Mo(CO)6 and characterized by an X-ray structure analysis as (TMPO)2MoO2 complex. In the coordinatively unsaturated 16 electron compound of mm2 symmetry the MoVI is coordinated nearly tetrahedrally by the four ligands, the TMPO? ligands being O,N coordinated. The Mo? O, Mo? N, and Mo?O distances are 1.972(3), 2.198(3), and 1.711(2) Å respectively; the N? O distances are 1.436(4) Å. The stereochemistry of the Mo coordination is the same as in other (R2NO)2MoO2 complexes.  相似文献   

11.
Reported here is the N2 cleavage of a one‐electron oxidation reaction using trans‐[Mo(depe)2(N2)2] ( 1 ) (depe=Et2PCH2CH2PEt2), which is a classical molybdenum(0)‐dinitrogen complex supported by two bidentate phosphine ligands. The molybdenum(IV) terminal nitride complex [Mo(depe)2N][BArf4] ( 2 ) (BArf4=B(3,5‐(CF3)2C6H3)4) is synthesized by the one‐electron oxidation of 1 upon addition of a mild oxidant, [Cp2Fe][BArf4] (Cp=C5H5), and proceeds by N2 cleavage from a MoII‐N=N‐MoII structure. In addition, the electrochemical oxidation reaction for 1 also cleaved the N2 ligand to give 2 . The dimeric Mo complex with a bridging N2 is detected by in situ resonance Raman and in situ UV‐vis spectroscopies during the electrochemical oxidation reaction for 1 . Density‐functional theory (DFT) calculations reveal that the unstable monomeric oxidized MoI species is converted into 2 via the dimeric structure involving a zigzag transition state.  相似文献   

12.
The title compound, hexa­ammonium tetra‐μ3‐selenido‐tetra­kis­(tri­cyano­molybdenum) hexahydrate, is isostructural with the Mo/S, W/S and W/Se analogues. The structure contains disordered cyclic hydrogen‐bonded [{(NH4)(H2O)}3]3+ cations and [Mo4Se4(CN)12]6? cluster anions with 3m symmetry. The cation assembly consists of alternating ammonium and water mol­ecules linked by N—H?O hydrogen bonds. The anion has a typical cubane cluster structure. The cations and anions are linked together by hydrogen bonds involving the terminal N atoms of the CN groups.  相似文献   

13.
The novel structure‐type Ag2.54Tl2Mo12Se15 (silver thallium molybdenum selenide) is built up of Mo6Sei8Sea6 and Mo9Sei11Sea6 cluster units in a 1:2 ratio, which are three‐dimensionally connected to form the Mo–Se network. The Ag and Tl cations are distributed in several voids within the cluster network. Three of the seven independent Se atoms and one Tl atom lie on sites with 3.. symmetry (Wyckoff sites 2c or 2d).  相似文献   

14.
Synthesis and Structure of Two- and Threenuclear Heterometallic Complexes with Nitrido Bridges between Re and Mo The reaction of ReNCl2(PMe2Ph)3 with MoCl4(NCEt)2 yields the heterometallic threenuclear complex [{(Me2PhP)3(EtCN)ClRe≡N–}2MoCl4][MoNCl5]. The anion [MoNCl5]2– presumably results from a transfer of the nitrido ligand from the Re to the Mo atom. The air-sensitive compound is paramagnetic with μeff = 2.87 B. M. at room temperature. A reduction of the magnetic moment to 1.74 B.M at 20 K starts at 140 K. The complex crystallizes in the orthorhombic space group Pca21 with a = 2430(1), b = 1328(1), c = 2436.3(2) pm, Z = 4. With bond angles Re–N–Mo of 164° and 167° the nitrido bridges are almost linear. The distances Re–N of 169 and 170 pm can be interpreted with triple bonds. The Mo–N bond lengths of 210 and 211 pm correspond to single bonds. In the anion [MoNCl5]2– the distance Mo≡N is 167 pm. Hydrolysis of the threenuclear complex results in a cleavage of one of the nitrido bridges to yield (Me2PhP)3(EtCN)ClRe≡N–MoOCl4. The compound is paramagnetic with μeff = 1.71 B.M. at room temperature. It crystallizes in the orthorhombic space group Pbca with a = 1718.5(4), b = 2037(1), c = 2041.1(7) pm, Z = 8. In the dinuclear complex the [MoOCl4] unit is only weakly coordinated to the nitrido ligand with Mo–N = 246.5 pm, while the distance of the Re≡N bond of 168.1 pm is almost unchanged in comparison with a terminal bond. The bond angle Re≡N–Mo is 165.6°.  相似文献   

15.
A series of bis(σ)-borane complexes of Group 6 transition metals were prepared by direct dihydroborane coordination to the metal center. Reaction of [M(CO)3(PCy3)2] and two dihydroboranes [DurBH2] and [(Me3Si)2NBH2] (Dur=2,3,5,6-Me4C6H) yielded bis(σ)-borane complexes fac-[M(CO)3(PCy3){η2-(H2BR)}] (R=Dur; 1 : M=Cr, 2 : M=W; R=N(SiMe3)2; 3 : M=Cr, 4 : M=W). In the case of molybdenum, we have isolated an arene complex ( 5 ) with [DurBH2] in which the Dur group acts as a η6-bound ligand, and with [(Me3Si)2NBH2] a similar bis(σ)-borane complex was isolated, cis,trans-[Mo(CO)2(PCy3)22-(H2BN(SiMe3)2}] ( 6 ), with a different pattern of auxiliary ligands. The complexes were investigated by multinuclear NMR spectroscopy, mass spectrometry, X-ray diffraction analysis, and computational methods. Quantum theory of atoms in molecules (QTAIM) calculations demonstrated that the borane complexes may be described as pure bis(σ)-borane complexes rather than elongated or stretched examples given that the calculations do not show the presence of a ring-critical point (RCP) at the ring formed by the interactions of the B−H with metal center.  相似文献   

16.
Preparation, Properties, and Reaction Behaviour of 2-(Dimethylaminomethyl)phenyl- and 8-(Dimethylamino)naphthylsubstituted Lithium Hydridosilylamides – Formation of Silanimines by Elimination of Lithium Hydride The hydridosilylamines Ar(R)Si(H)–NHR′ ( 2 a : Ar = 2-Me2NCH2C6H4, R = Me, R′ = CMe3; 2 b : Ar = 2-Me2NCH2C6H4, R = Ph, R′ = CMe3; 2 c : Ar = 2-Me2NCH2C6H4, R = Me, R′ = SiMe3; 2 d : Ar = 8-Me2NC10H6, R = Me, R′ = CMe3; 2 e : Ar = 8-Me2NC10H6, R = Ph, R′ = CMe3; 2 f : Ar = 8-Me2NC10H6, R = Me, R′ = SiMe3) have been synthesized from the appropriate chlorosilanes Ar(R)SiHCl either by reaction with the stoichiometric amount of Me3CNHLi ( 2 a , 2 b , 2 d , 2 e ) or by coammonolysis in liquid NH3 with chlorotrimethylsilane in molar ratio 1 : 3 ( 2 c , 2 f ). Treatment of 2 a–2 f with n-butyllithium in equimolar ratio in n-hexane resulted in the lithiumhydridosilylamides Ar(R)Si(H)–N(Li)R′ 3 a–3 f . The frequencies of the Si–H stretching vibration and 29Si–1H coupling constants in the amides are smaller than in the analogous amines indicating a higher hydride character for the hydrogen atom of the Si–H group in the amides compared to the amines. Results of NMR spectroscopic studies point to the existence of a (Me2)N → Si coordination bond in the 8-(dimethylamino)naphthyl-substituted amines and amides. The amides 3 a–3 c are stable under refluxing in m-xylene. At the same conditions 3 d and 3 e eliminate LiH and the silanimines 8-Me2NC10H6(R)Si=NCMe3 ( 4 d : R = Me, 4 e : R = Ph) are formed. The amides 3 a–3 d und 3 f react with chlorotrimethylsilane in THF to give the corresponding N-substitution products Ar(R)Si(H)–N(SiMe3)R′ 6 a–6 d and 6 f in good yields. 4 d is formed as a byproduct in the reaction of 3 d with chlorotrimethylsilane. In n-hexane and m-xylene these amides are little reactive opposite to chlorotrimethylsilane. 6 a–6 d and 6 f are obtained in very small amounts. In the case of 3 d besides the N-substitution product 6 d the silanimine 4 d is obtained. In contrast to chlorotrimethylsilane the amides 3 a and 3 f react well with chlorodimethylsilane in m-xylene producing 2-Me2NCH2C6H4(H) SiMe–N(SiHMe2)CMe3 ( 7 a ) and 8-Me2NC10H6(H)SiMe–N(SiHMe2)SiMe3 ( 7 f ).  相似文献   

17.
To further extend diiron subsite models of [FeFe]-hydrogenases, the various substitutions of all-carbonyl diiron complex Fe2(μ-Me2pdt)(CO)6 ( A , Me2pdt = (SCH2)2CMe2) with monophosphines or small bite-angle diphosphines are studied as follows. Firstly, the monodentate complexes Fe2(μ-Me2pdt)(CO)5{κ1-P(C6H4R-p)3} [R = Me ( 1a ) and Cl ( 1b )] and Fe2(μ-Me2pdt)(CO)5{κ1-Ph2PX'} [X' = NHPh ( 2a ) and CH2PPh2 ( 2b )] are readily afforded through the Me3NO-assisted reactions of A with monophosphines P(C6H4R-p)3 (R = Me, Cl) and diphosphines (Ph2P)2X (X = NPh, CH2 (dppm)) in MeCN at room temperature, respectively. Secondly, the chelate complexes Fe2(μ-Me2pdt)(CO)4(κ2-(Ph2P)2X) [X = NPh ( 3a ) and NBun ( 3b )] can be efficiently prepared by the UV-irradiated reactions of A with small bite-angle diphosphines (Ph2P)2X (X = NPh, NBun) in toluene. Thirdly, the bridge complexes Fe2(μ-Me2pdt)(CO)4(μ-(Ph2P)2X) [X = NPh ( 4a ) and CH2 ( 4b )] are well obtained from the refluxing solutions of A and diphosphines (Ph2P)2X (X = NPh, CH2) in xylene. Rarely, the diphosphine-bridge complex 4b may be produced in low yield via the UV-irradiated solutions of A and the dppm ligand in toluene emitting at 365 nm. Eight new complexes obtained above have been well characterized by using element analysis, FT-IR, NMR (1H, 31P) spectroscopies, and particularly for 1a , 1b , 2a , 3b , 4a , 4b by X-ray crystallography. Meanwhile, the electrochemical and electrocatalytic properties of three representative complexes 2a , 3a , and 4a with pendant N-phenyl groups are investigated and compared by using cyclic voltammetry (CV) in the absence and presence of trifluoroacetic acid (TFA) as a proton source, indicating that they are all found to be active for electrocatalytic proton reduction to hydrogen (H2).  相似文献   

18.
Molybdenum and tungsten iodide clusters with the [M6I8] cluster core show versatile photophysical properties that strongly depend on the nature of six apical ligands (L) in [M6I8L6]2–. In course of our syntheses we report a new efficient preparation of Cs2[Mo6I14] as precursor. Target compounds (nBu4N)2[M6I8(NCO)6] with M = Mo, W with cyanate ligands were synthesized and structurally characterized to study their photophysical properties. (nBu4N)2[M6I8(NCO)6] compounds appear as deep red (Mo) and light yellow (W) crystal powders showing strong phosphorescence. Compared to other cluster compounds of this type there is no significant concentration quenching obtained by the presence of molecular oxygen.  相似文献   

19.
A trinuclear linear Mo-Fe-Mo dialkyldithiocarbamate complex [Et4N] { [ Me2dtcMoO (μ-S)2 ]2Fe} has been obtained and structurally characterized, which contains two Me2dtcMoO-(μ-S)2 units coordinated to a central tetrahedral Fe atom. A comparison of the structural parameters indicates the metal oxidation states of 2Mo(v) Fe(III). The 1H NMR shows chemical shifts of Me2dtc ligands at 5 10.14 and 8 9.40 with the intensity ratio of 1:1. The cyclic voltammogram displays a reversible couple at - 1.41 V/ - 1.36 V responsible for 1-/2-anions of the complex and an irreversible oxidation at 0.5 V, which seems to show the apparent lack of stability for its neutral species (Me2dtcMoOS2)2Fe.  相似文献   

20.
The current library of amidinate ligands has been extended by the synthesis of two novel dimethylamino-substituted alkynylamidinate anions of the composition [Me2N−CH2−C≡C−C(NR)2] (R = iPr, cyclohexyl (Cy)). The unsolvated lithium derivatives Li[Me2N−CH2−C≡C−C(NR)2] ( 1 : R = iPr, 2 : R = Cy) were obtained in good yields by treatment of in situ-prepared Me2N−CH2−C≡C−Li with the respective carbodiimides, R−N=C=N−R. Recrystallization of 1 and 2 from THF afforded the crystalline THF adducts Li[Me2N−CH2−C≡C−C(NR)2] ⋅ nTHF ( 1 a : R = iPr, n=1; 2 a : R = Cy, n=1.5). Precursor 2 was subsequently used to study initial complexation reactions with selected di- and trivalent transition metals. The dark red homoleptic vanadium(III) tris(alkynylamidinate) complex V[Me2N−CH2−C≡C−C(NCy)2]3 ( 3 ) was prepared by reaction of VCl3(THF)3 with 3 equiv. of 2 (75 % yield). A salt-metathesis reaction of 2 with anhydrous FeCl2 in a molar ratio of 2 : 1 afforded the dinuclear homoleptic iron(II) alkynylamidinate complex Fe2[Me2N−CH2−C≡C−C(NCy)2]4 ( 4 ) in 69 % isolated yield. Similarly, treatment of Mo2(OAc)4 with 3 or 4 equiv. of 2 provided the dinuclear, heteroleptic molybdenum(II) amidinate complex Mo2(OAc)[Me2N−CH2−C≡C−C(NCy)2]3 ( 5 ; yellow crystals, 50 % isolated yield). The cyclohexyl-substituted title compounds 2 a , 4 , and 5 were structurally characterized through single-crystal X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号