首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectroscopy is an emerging technique in bioanalysis and imaging of biomaterials owing to its unique capability of generating spectroscopic fingerprints. Imaging cells and tissues by Raman microspectroscopy represents a nondestructive and label‐free approach. All components of cells or tissues contribute to the Raman signals, giving rise to complex spectral signatures. Resonance Raman scattering and surface‐enhanced Raman scattering can be used to enhance the signals and reduce the spectral complexity. Raman‐active labels can be introduced to increase specificity and multimodality. In addition, nonlinear coherent Raman scattering methods offer higher sensitivities, which enable the rapid imaging of larger sampling areas. Finally, fiber‐based imaging techniques pave the way towards in vivo applications of Raman spectroscopy. This Review summarizes the basic principles behind medical Raman imaging and its progress since 2012.  相似文献   

2.
In this review the basis, recent developments and applications of coherent anti-Stokes Raman scattering (CARS) in the fields of spectroscopy and microscopy are dialed with. The nonlinear susceptibility of the investigated molecule induced by pump and Stokes laser beams employed in the CARS technique is discussed. The relation between the nonlinear susceptibility, the different CARS laser intensities and the phase matching condition between them is also presented. The structure of CARS spectrum is analyzed as a function of the physical characteristics of the different employed lasers. This includes laser half widths, interference effects, cross-coherence and saturation of the resultant CARS signal by stimulated Raman scatter process (SRS). The different broadening mechanisms for CARS spectral line such as pressure and Doppler broadening are demonstrated. The recent progress in CARS for the in situ reaction flame diagnosis due to its suitability for detection of vibrational-rotational excited gas molecules present in the electronic ground state is discussed. CARS diagnosis for liquid- and solid-phases including the progress in polymeric materials is considered. The applications of CARS microscopy are reviewed in the view of its recent advances to study chemical and biological systems.  相似文献   

3.
Recently, Raman spectroscopy become a popular and potential analytical technique for the analysis of pharmaceuticals as a result of its advancement. The innovation of laser technology, Fourier Transform-Raman spectrometers with charge coupled device (CCD) detectors, ease of sample preparation and handling, mitigation of sub-sampling problems using different geometric laser irradiance patterns and invention of different optical components of Raman spectrometers are contributors of the advancement of Raman spectroscopy. Transmission Raman Spectroscopy is a useful tool in pharmaceutical analysis to address the problems related with sub-sampling in conventional Raman back scattering. More importantly, the development of surface-enhanced Raman scattering (SERS) has been a prominent advancement for Raman spectroscopy to be applied for pharmaceuticals analysis as it avoids the inherent insensitivity and fluorescence problems. As the active pharmaceutical ingredients (APIs) contain aromatic or conjugated domains with strong Raman scattering activity, Raman spectroscopy is an attractive alternative conventional analytical method for pharmaceuticals. Coupling of Raman spectroscopy with separation techniques is also another advancement applied to reduce or avoid possible spectral interferences. Therefore, in this review, transmission Raman spectroscopy, SERS, and SERS coupled with various separation techniques for pharmaceutical analysis are presented.  相似文献   

4.
Methods for chemical analysis at the nanometer scale are crucial for understanding and characterizing nanostructures of modern materials and biological systems. Tip‐enhanced Raman spectroscopy (TERS) combines the chemical information provided by Raman spectroscopy with the signal enhancement known from surface‐enhanced Raman scattering (SERS) and the high spatial resolution of atomic force microscopy (AFM) or scanning tunneling microscopy (STM). A metallic or metallized tip is illuminated by a focused laser beam and the resulting strongly enhanced electromagnetic field at the tip apex acts as a highly confined light source for Raman spectroscopic measurements. This Review focuses on the prerequisites for the efficient coupling of light to the tip as well as the shortcomings and pitfalls that have to be considered for TERS imaging, a fascinating but still challenging way to look at the nanoworld. Finally, examples from recent publications have been selected to demonstrate the potential of this technique for chemical imaging with a spatial resolution of approximately 10 nm and sensitivity down to the single‐molecule level for applications ranging from materials sciences to life sciences.  相似文献   

5.
石墨碳纳米材料因其特殊的光学性质而受到广泛关注。石墨碳纳米材料最引人注目的光学性质之一是其独特的拉曼性质,作为拉曼探针,石墨碳纳米材料在对于复杂生物样品,极端测试条件和定量拉曼检测方面都有很好的应用;除了拉曼性质以外,单壁碳纳米管(SWNTs)独特的近红外二区(NIR-II,1000-1700 nm)荧光性质,具有穿透深度大、分辨率高的荧光成像特点,在生物活体成像领域也得到了很好的应用。除了光致发光特性,石墨碳纳米材料还具有优异的光热转换效应,同时具有比表面积大的特点,被广泛应用在针对肿瘤的热疗及其它疗法协同治疗当中。除此之外,石墨碳纳米材料还是一种高效的信号传导基底,可以猝灭激发态的染料和光敏剂,利用该类性质设计的生物传感器和纳米药物,显现出高灵敏、高选择性的特点。本文主要结合本课题组的工作,总结和探讨了石墨碳纳米材料作为光学探针、光热材料和信号传递基底在生化传感领域的应用。  相似文献   

6.
在过去的近十年中,各种新型原位表征技术和反应器设计被应用于多相催化过程和催化材料的合成研究中,并获得了许多新认识.特别是最近几年,利用原位、共振拉曼光谱技术对分子筛合成关键物种检测、杂原子分子筛催化活性位的研究取得了一系列进展.这些技术的应用使得从分子水平认识复杂的多孔材料成为可能:从合成初期碎片基元检测、碎片相互连接的关键化学键到预组装类微孔结构;从高度隔离过渡金属中心到配位化学键断裂生成活性中间物种,再到完成催化反应循环.这为设计特定功能和结构的催化材料及高选择性的活性中心奠定了坚实的基础.  相似文献   

7.
《中国化学快报》2021,32(8):2369-2379
Living-cell imaging demands high specificity,sensitivity,and minimal background interference to the targets of interest.However,developing a desirable imaging probe that can possess all the above features is still challenging.The bioorthogonal surface-enhanced Raman scattering(SERS) imaging has been recently emerged through utilizing Raman reporters with characteristic peaks in Raman-silent region of cells(1800-2800 cm~(-1)),which opens a revolutionary avenue for living-cell imaging with multiplexing capability.In this review,we focus on the recent advances in the technology development and the biological and biomedical applications of the living-cell bioorthogonal SERS imaging technique.After introduction of fundamental principles for bioorthogonal tag or label,we present applications for visualization of various intracellular components and environment including proteins,nucleic acids,lipids,pH and hypoxia,even for cancer diagnosis in tissue samples.Then,various bioorthogonal SERS imaging-guided thera py strategies have been discussed such as photothera py and surge ry.In conclusion,this strategy has great potential to be a flexible and robust tool for visualization detection and diseases diagnosis.  相似文献   

8.
Fast determination of milk fat content using Raman spectroscopy   总被引:1,自引:0,他引:1  
In our work, we have demonstrated the capability of VIS Raman spectroscopy in combination with partial least square regression (PLS) as a rapid technique for direct milk fat determination. Raman spectra of milk samples revealed contributions from proteins, but mainly from their fat content with different spectral characteristics. Three different methods of sample preparations were applied: (i) liquid milk contained in an open dish, (ii) dried milk droplets on glass plates covered with Al foil, and (iii) liquid milk contained in quartz cuvettes. Methods (i) and (ii) showed a good PLS model for milk fat prediction with low root mean square errors and high correlation coefficients. The main advantage of milk sample contained in the dish lies in its simplicity as well as the fact that the open container maximizes the signal of interest avoiding background contributions. Our results show that Raman spectroscopy is suited for in-line monitoring purposes.  相似文献   

9.
Surface-enhanced Raman scattering (SERS) has established itself as an important analytical technique. However, efforts to transfer the technology from the laboratory to the production line, clinic or field have been frustrated by the lack of robust affordable substrates and the complexity of interfacing between sample and spectrometer. Prompted by the success of optical fibre systems for implementing normal Raman scattering spectroscopy in remote locations and biomedical applications, attention has now shifted to the development of SERS-active optical fibres. Other workers have attempted to develop SERS probes with extended interaction lengths and both far-field and near-field SERS imaging techniques for high-resolution chemical mapping of surfaces. This review discusses the development of these technologies and presents the current state of the art. Although recent developments show great promise, some outstanding challenges and opportunities remain to be addressed.  相似文献   

10.
SERS: a versatile tool in chemical and biochemical diagnostics   总被引:1,自引:0,他引:1  
Raman spectroscopy is a valuable tool in various research fields. The technique yields structural information from all kind of samples often without the need for extensive sample preparation. Since the Raman signals are inherently weak and therefore do not allow one to investigate substances in low concentrations, one possible approach is surface-enhanced (resonance) Raman spectroscopy. Here, rough coin metal surfaces enhance the Raman signal by a factor of 104–1015, depending on the applied method. In this review we discuss recent developments in SERS spectroscopy and their impact on different research fields.  相似文献   

11.
Surface‐enhanced Raman scattering (SERS) is one of the most straightforward applications of the so‐called nanoplasmonics. This powerful molecular spectroscopy technique is based on the enhancement of the inelastic scattering from molecules located near nanostructured metallic surfaces when these are illuminated and surface plasmons are excited. The analytical applications of SERS are hindered when the Raman cross‐section of the analyte is too low, which is often the case in inorganic molecular species. This problem is even more serious when atomic species are to be identified, since these cannot display a vibrational signal. Herein we discuss the recent advancements toward the SERS detection of small inorganic compounds, including both molecular and atomic species.  相似文献   

12.
A critical review is presented on the use of linear and nonlinear Raman microspectroscopy in biomedical diagnostics of bacteria, cells, and tissues. This contribution is combined with an overview of the achievements of our research group. Linear Raman spectroscopy offers a wealth of chemical and molecular information. Its routine clinical application poses a challenge due to relatively weak signal intensities and confounding overlapping effects. Nonlinear variants of Raman spectroscopy such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) have been recognized as tools for rapid image acquisition. Imaging applications benefit from the fact that contrast is based on the chemical composition and molecular structures in a label-free and nondestructive manner. Although not label-free, surface enhanced Raman scattering (SERS) has also been recognized as a complementary biomedical tool to increase sensitivity. The current state of the art is evaluated, illustrative examples are given, future developments are pointed out, and important reviews and references from the current literature are selected. The topics are identification of bacteria and single cells, imaging of single cells, Raman activated cell sorting, diagnosis of tissue sections, fiber optic Raman spectroscopy, and progress in coherent Raman scattering in tissue diagnosis. The roles of networks—such as Raman4clinics and CLIRSPEC on a European level—and early adopters in the translation, dissemination, and validation of new methods are discussed.  相似文献   

13.
翟学萍  尤慧艳 《色谱》2018,36(3):317-324
制备了Au@4-硝基苯硫酚@Ag内标化表面增强拉曼散射(SERS)探针,进一步以牛血清白蛋白(BSA)置换探针表面的稳定剂十六烷基三甲基溴化铵(CTAB),发展了Au@NT@Ag@BSA内标化SERS探针。Au@NT@Ag@BSA探针保留了原探针的单分散性和高灵敏度,同时显著提高了信号稳定性和生物相容性。进一步将Au@NT@Ag@BSA探针和SMMC7721肺癌细胞共孵育,实现了细胞的探针标记和拉曼光谱成像。Au@NT@Ag@BSA内标化SERS探针在活体生物成像等方面展示了良好的应用潜力。  相似文献   

14.
Surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) combined emissions were used in this work to the analysis of humic acids (HA). This study examined HA structure at different pH and HA concentrations and assessed the structural differences taking place in HA as a result of various amendment trials. Raman and fluorescence emissions behave in opposite ways due to the effect of the metal surface on the aromatic groups responsible for these emissions. The information afforded by these techniques can be successfully employed in the structural and dynamic analysis of these important macromolecules. The surface-enhanced emission (SEE) spectra, that is the sum of the Raman and the fluorescence emissions, were acquired by using both macro- and micro-experimental configurations in order to apply imaging and confocal Raman and fluorescence spectroscopy techniques on the analysis of HA.  相似文献   

15.
Surface-enhanced Raman scattering (SERS) has become an integral part of spectroscopy. The inelastic scattering process is enhanced by several orders of magnitude when molecules are in close contact to nano-structured coin metals. However, the use of surface enhancement in combination with nonlinear spectroscopy is by far not as common as in linear spectroscopy even though a more drastic effect could be expected. In our work, we report the observations we made from the preliminary studies on surface enhancement mechanisms in combination with coherent anti-Stokes Raman scattering (CARS) using femtosecond laser pulses. Silver colloids were used as enhancement medium. Molecules, which show conventional SERS were selected for the experiments. Femtosecond CARS was performed on these molecular systems in the presence and absence of silver colloids. The scattered CARS signal was collected both in the forward and sideward directions. From the analysis of the results general observations were made about the factors affecting the performance of SE-CARS.  相似文献   

16.
表面增强拉曼光谱:应用和发展   总被引:2,自引:0,他引:2  
表面增强拉曼光谱技术(Surface-enhanced Raman spectroscopy,SERS)是一种具有超高灵敏度的指纹光谱技术,目前已广泛应用于表面科学、材料科学、生物医学、药物分析、食品安全、环境检测等领域,是一种极具潜力的痕量分析技术。 本文对SERS技术及相关的针尖增强拉曼光谱(Tip-enhanced Raman spectroscopy,TERS),壳层隔绝纳米粒子增强拉曼光谱(Shell-isolated nanoparticle-enhanced Raman spectroscopy,SHINERS)技术的发展及应用进行了综合评述,并探讨了其未来的研究热点及发展方向。  相似文献   

17.
Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman‐silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label‐free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state‐of‐the‐art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non‐invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live‐cell imaging.  相似文献   

18.
Multiplex optical detection in live cells is challenging due to overlapping signals and poor signal-to-noise associated with some chemical reporters. To address this, the application of spectral phasor analysis to stimulated Raman scattering (SRS) microscopy for unmixing three bioorthogonal Raman probes within cells is reported. Triplex detection of a metallacarborane using the B−H stretch at 2480–2650 cm−1, together with a bis-alkyne and deuterated fatty acid can be achieved within the cell-silent region of the Raman spectrum. When coupled to imaging in the high-wavenumber region of the cellular Raman spectrum, nine discrete regions of interest can be spectrally unmixed from the hyperspectral SRS dataset, demonstrating a new capability in the toolkit of multiplexed Raman imaging of live cells.  相似文献   

19.
Cellular heterogeneity presents a major challenge in understanding the relationship between cells of particular genotype and response in disease. In order to characterize the cell-to-cell differences during the biochemical processes, single-cell analysis is necessary. Profiting from the unique localized surface plasmon resonance (LSPR) and Mie scattering, plasmonic nanostructures have revealed stable and adjustable scattering signals, avoiding photobleaching, blinking and autofluorescence phenomenon. These characterizations are propitious to the dynamic trace and biological image of single living cells. In this review, we discuss the recent advances in plasmonic nanostructures applied for label-free detection and monitoring of target cells at single-cell level by using three different techniques, surface-enhanced Raman scattering (SERS), surface-enhanced Infrared absorption spectroscopy (SEIRAS), and dark-field microscopy. Various avenues to design plasmonic probes combining spectra and imaging for single-cell analysis are demonstrated as well. We hope this review can highlight the superiority of plasmonic nanostructures in single cellular analysis, and further motivate the development of label-free cell analysis technique to elucidate cellular diversity and heterogeneity.  相似文献   

20.
Surface‐enhanced Raman scattering (SERS) is quickly growing as an analytical technique, because it offers both molecular specificity and excellent sensitivity. For select substrates, SERS can even be observed from single molecules, which is the ultimate limit of detection. This review describes recent developments in the field of single‐molecule SERS (SM‐SERS) with a focus on new tools for characterizing SM‐SERS‐active substrates and how they interact with single molecules on their surface. In particular, techniques that combine optical spectroscopy and microscopy with electron microscopy are described, including correlated optical and transmission electron microscopy, correlated super‐resolution imaging and scanning electron microscopy, and correlated optical microscopy and electron energy loss spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号