首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We are utilizing recent advances in ultrafast laser technology and recent discoveries in optimal shaping of laser pulses to significantly enhance the stand-off detection of explosives via control of molecular processes at the quantum level. Optimal dynamic detection of explosives is a method whereby the selectivity and sensitivity of any of a number of nonlinear spectroscopic methods are enhanced using optimal shaping of ultrafast laser pulses. We have recently investigated the Gerchberg–Saxton algorithm as a method to very quickly estimate the optimal spectral phase for a given analyte from its spontaneous Raman spectrum and the ultrafast laser pulse spectrum. Results for obtaining selective coherent anti-Stokes Raman spectra (CARS) for an analyte in a mixture, while suppressing the CARS signals from the other mixture components, are compared for the Gerchberg–Saxton method versus previously obtained results from closed-loop machine-learning optimization using evolutionary strategies.  相似文献   

2.
相干拉曼散射显微术(Coherent Raman Scattering Microscopy)是一类植根于拉曼散射的光学显微成像方法,主要包含相干反斯托克斯拉曼散射(Coherent Anti-Stokes Raman Scattering,CARS)和受激拉曼散射(Stimulated Raman Scattering,SRS)两种方法.CARS/SRS显微术通过探测目标分子特定的振动来提供成像所需的衬度,通过非线性光学过程大大提高了检测的灵敏度,同时本征地具备三维成像能力.CARS和SRS显微术可以对脂类等不易被标记的物质成像,还可以很好地通过选择振动光谱,对生物体内特定小分子物质如药物等,以及生物大分子如核酸、蛋白质等进行无需标记的成像,因此成为极有潜力的活体(invivo)成像手段.本文主要介绍了CARS和SRS显微术的基本原理、实验操作及其在化学和生命科学中的应用.  相似文献   

3.
Surface-enhanced Raman scattering (SERS) has become an integral part of spectroscopy. The inelastic scattering process is enhanced by several orders of magnitude when molecules are in close contact to nano-structured coin metals. However, the use of surface enhancement in combination with nonlinear spectroscopy is by far not as common as in linear spectroscopy even though a more drastic effect could be expected. In our work, we report the observations we made from the preliminary studies on surface enhancement mechanisms in combination with coherent anti-Stokes Raman scattering (CARS) using femtosecond laser pulses. Silver colloids were used as enhancement medium. Molecules, which show conventional SERS were selected for the experiments. Femtosecond CARS was performed on these molecular systems in the presence and absence of silver colloids. The scattered CARS signal was collected both in the forward and sideward directions. From the analysis of the results general observations were made about the factors affecting the performance of SE-CARS.  相似文献   

4.
Coherent anti-Stokes Raman scattering (CARS) microscopy is presented as a new nonlinear optical technique. The combination of vibrational spectroscopy and microscopy allows highly sensitive investigations of unlabelled samples. CARS is an ideal tool for studying a broad variety of samples. The main drawback of the technique is its non-zero-background nature, which implies that the signal has to be detected against a nonresonant background. The need to solve this problem is reflected in the rapid technological developments that have been observed during the last decade. Recent results show that CARS microscopy has the potential to become an important complementary technique that can be used with other well-established microscopic methods. Although it has some limitations, it offers unique access to many problems that cannot be tackled with conventional techniques. For this reason, it can be expected that the impressive growth of the field will continue.  相似文献   

5.
Whether in lipid membranes, liquid crystals or solid‐state catalysts, the orientational ordering of molecules greatly influences the overall system behaviour. However, watching molecular alignment is a huge technical challenge. This article introduces nonlinear Raman (coherent anti‐Stokes Raman scattering; CARS) microscopy as a promising tool for fast, label‐free 3D chemical and structural sample characterization at the nanoscale in real time.  相似文献   

6.
A critical review is presented on the use of linear and nonlinear Raman microspectroscopy in biomedical diagnostics of bacteria, cells, and tissues. This contribution is combined with an overview of the achievements of our research group. Linear Raman spectroscopy offers a wealth of chemical and molecular information. Its routine clinical application poses a challenge due to relatively weak signal intensities and confounding overlapping effects. Nonlinear variants of Raman spectroscopy such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) have been recognized as tools for rapid image acquisition. Imaging applications benefit from the fact that contrast is based on the chemical composition and molecular structures in a label-free and nondestructive manner. Although not label-free, surface enhanced Raman scattering (SERS) has also been recognized as a complementary biomedical tool to increase sensitivity. The current state of the art is evaluated, illustrative examples are given, future developments are pointed out, and important reviews and references from the current literature are selected. The topics are identification of bacteria and single cells, imaging of single cells, Raman activated cell sorting, diagnosis of tissue sections, fiber optic Raman spectroscopy, and progress in coherent Raman scattering in tissue diagnosis. The roles of networks—such as Raman4clinics and CLIRSPEC on a European level—and early adopters in the translation, dissemination, and validation of new methods are discussed.  相似文献   

7.
Raman spectroscopy is an emerging technique in bioanalysis and imaging of biomaterials owing to its unique capability of generating spectroscopic fingerprints. Imaging cells and tissues by Raman microspectroscopy represents a nondestructive and label‐free approach. All components of cells or tissues contribute to the Raman signals, giving rise to complex spectral signatures. Resonance Raman scattering and surface‐enhanced Raman scattering can be used to enhance the signals and reduce the spectral complexity. Raman‐active labels can be introduced to increase specificity and multimodality. In addition, nonlinear coherent Raman scattering methods offer higher sensitivities, which enable the rapid imaging of larger sampling areas. Finally, fiber‐based imaging techniques pave the way towards in vivo applications of Raman spectroscopy. This Review summarizes the basic principles behind medical Raman imaging and its progress since 2012.  相似文献   

8.
9.
Saturation broadening in coherent anti-stokes Raman spectroscopy (CARS) is analyzed under conditions where relaxation effects are negligible by solving the appropriate Bloch equations exactly. The present analysis extends that previously given by Duncan, Oesterlin, König and Byer, who experimentally observed saturation broadening in high-resolution CARS.  相似文献   

10.
Surface-enhanced Raman scattering (SERS) is a promising analytical tool in nanoscale detection because of its high sensitivity and selectivity. This review focuses on recent advances in SERS-based detection of DNA and RNA. First, nanostructure-based SERS-active substrates are introduced. Using label-free and labeled SERS, target biomolecules such DNA, RNA and microRNA have been successfully detected. Finally, applications in pathogen diagnosis are discussed. The prospects and challenges of SERS-based bioanalysis are highlighted.  相似文献   

11.
基于飞秒再生放大器及飞秒光学参量放大器输出的激光脉冲, 搭建了宽带时间分辨相干反斯托克斯拉曼散射(CARS)测试装置, 并利用该装置研究了氢气与空气混合气体中氢气的相对含量, 探测相对延时与CARS光谱之间的关系. 通过调整延时, 获得了无非共振背景干扰的氢气CARS信号. 实验中测得的CARS信号强度与氢气浓度(分压)的平方呈良好的线性关系, 符合CARS理论预测. 同时测得的实验数据的信噪比表明: 在当前的实验条件下, 在氢气与空气混合气的总压为0.1 MPa时, 该装置可以对氢气的浓度进行测量, 且其检测极限可低至0.2%. 本文还利用该装置对三联吡啶苯乙炔Pt 配合物-Co 配合物-三乙醇胺(TEOA)的三元化学催化体系的产氢动力学行为进行了研究, 通过改变pH值讨论了该催化体系的产氢动力学机制. 结果表明过高的质子浓度会降低体系的产氢效率, 这可能是因为在酸性条件下, 作为质子和电子供体的三乙醇胺分解被抑制, 电子供应中断, 导致产氢反应的停止.  相似文献   

12.
Multiple emulsions consisting of water droplets dispersed in an oil phase containing emulsifier which is emulsified in an outer water phase (W/O/W) are of great interest in pharmacology for developing new drugs, in the nutrition sciences for designing functional food, and in biology as model systems for cell organelles such as liposomes. In the food industry multiple emulsions with high sugar content in the aqueous phase can be used for the production of sweets, because the high sugar content prevents deterioration. However, for these emulsions the refractive indexes of oil and aqueous phase are very similar. This seriously impedes the analysis of these emulsions, e.g., for process monitoring, because microscopic techniques based on transmission or reflection do not provide sufficient contrast. We have characterized the inner dispersed phase of concentrated W/O/W emulsions with the same refractive index of the three phases by micro Raman spectroscopy and investigated the composition and molecular distribution in water-oil-water emulsions by means of three-dimensional laser scanning CARS (coherent anti-Stokes Raman scattering) microscopy. CARS microscopy has been used to study water droplets dispersed in oil droplets at different Raman resonances to visualize different molecular species. Water droplets with a diameter of about 700 nm could clearly be visualized. The advantages of CARS microscopy for studying this particular system are emphasized by comparing this microscopic technique with conventional confocal reflection and transmission microscopies.  相似文献   

13.
Methods for chemical analysis at the nanometer scale are crucial for understanding and characterizing nanostructures of modern materials and biological systems. Tip‐enhanced Raman spectroscopy (TERS) combines the chemical information provided by Raman spectroscopy with the signal enhancement known from surface‐enhanced Raman scattering (SERS) and the high spatial resolution of atomic force microscopy (AFM) or scanning tunneling microscopy (STM). A metallic or metallized tip is illuminated by a focused laser beam and the resulting strongly enhanced electromagnetic field at the tip apex acts as a highly confined light source for Raman spectroscopic measurements. This Review focuses on the prerequisites for the efficient coupling of light to the tip as well as the shortcomings and pitfalls that have to be considered for TERS imaging, a fascinating but still challenging way to look at the nanoworld. Finally, examples from recent publications have been selected to demonstrate the potential of this technique for chemical imaging with a spatial resolution of approximately 10 nm and sensitivity down to the single‐molecule level for applications ranging from materials sciences to life sciences.  相似文献   

14.
A theoretical analysis of coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase resonances using femtosecond lasers is performed. The time-dependent density matrix equations for the femtosecond CARS process are formulated and manipulated into a form suitable for solution by direct numerical integration (DNI). The temporal shapes of the pump, Stokes, and probe laser pulses are specified as an input to the DNI calculations. It is assumed that the laser pulse shapes are 70 fs Gaussians and that the pulses are Fourier-transform limited. A single excited electronic level is defined as an effective intermediate level in the Raman process, and transition strengths are adjusted to match the experimental Raman polarizability. The excitation of the Raman coherence is investigated for different Q-branch rotational transitions in the fundamental 2330 cm(-1) band of diatomic nitrogen, assuming that the pump and Stokes pulses are temporally overlapped. The excitation process is shown to be virtually identical for transitions ranging from Q2 to Q20. The excitation of the Raman coherences is also very efficient; for laser irradiances of 5x10(17) W/m2, corresponding approximately to a 100 microJ, 70 fs pulse focused to 50 microm, approximately 10% of the population of the ground Raman level is pumped to the excited Raman level during the impulsive pump-Stokes excitation, and the magnitude of the induced Raman coherence reaches 40% of its maximum possible value. The theoretical results are compared with the results of experiments where the femtosecond CARS signal is recorded as a function of probe delay with respect to the impulsive pump-Stokes excitation.  相似文献   

15.
C2H2分子(X1∑g+,ν2”=1,J”)态mj定向布居及光学AC Stark效应   总被引:2,自引:1,他引:1  
利用相干受激Raman抽运,选择性地激发C2H2分子单一振转态。在Raman泵浦与探测激光不同偏振条件下,获得紫外探测激光诱导的A^ ̄^1J(V′3=1)←-^ ̄Z^2Σ^+g,v′2=1,j″)荧光增益光谱,从而研究了C2H2分子单一振转态的光学AC Stark效应和mj的定向分布A0^(1),利用Stark线型加宽数值模型,从理论上计算得到的Raman线型与实验结果进行比较。  相似文献   

16.
The molecular organization inside myelin figures of various surfactants are studied by laser scanning coherent anti-Stokes Raman scattering (CARS) microscopy that permits three-dimension vibrational imaging. The resonant CARS signals from CH2 and H2O stretch vibrations are used to probe the surfactant and water molecules inside the myelin figures formed of C12E3, lecithin, and Aerosol OT. The polarization sensitivity of CARS is used to analyze the orientation of the CH2 groups and the H2O molecules. The CARS images suggest that the myelin figure is a concentric lamellar structure with alternating surfactant bilayers and partially ordered water layers. No sizable water core is observed in the CARS images at the lateral resolution of 0.3 microm and the axial resolution of 0.75 microm. The CARS data are verified by confocal fluorescence microscopy with FITC and DOPE-rhodamine labeling the water and bilayers, respectively. The relationship between the molecular composition and ordering inside the myelin figures and the surfactant structure has been investigated.  相似文献   

17.
With the aim of temperature diagnostic, femtosecond time-resolved CARS (coherent anti-Stokes Raman spectroscopy) is applied to probe H2 in H2-N2 mixtures. In a first part, a Lorentzian profile is used to model the femtosecond CARS response. A difference between the experimental broadening and the expected one is observed in the collision regime. The observed broadening increases strongly in an inhomogeneous way with respect to the perturber concentration. This is of considerable importance for temperature measurements. In a second part, we show that in the collision regime, this inhomogeneous broadening is due to the speed dependence of the collisional parameters and the memory effects of the radiator speed. A new modelization of the time-resolved CARS response taking into account the speed memory effects is presented and applied to the temperature diagnostic in H2-N2 mixtures. The numerical results are in good agreement with experiments.  相似文献   

18.
A single pulse interferometric coherent anti-Stokes Raman (CARS) spectroscopy method is used to obtain broadband CARS spectra and microscopy images of liquid and polymer samples. The pump, Stokes, and probe pulses are all selected inside a single broadband ultrafast pulse by a phase- and polarization-controlled pulse shaping technique and used to generate two spectral interference CARS signals simultaneously. The normalized difference of these two signals provides an amplified background-free broadband resonant CARS spectrum over the 400-1500 cm(-1) range with 35 cm(-1) spectral resolution. Chemically selective microscopy images of multicomponent polymer and liquid samples are investigated with this new CARS method. Multiplex CARS spectra at 10,000 spatial points are measured within a few minutes, and used to construct chemically selective microscopy images with a spatial resolution of 400 nm. The spectral bandwidth limits, sensitivity, homodyne amplification advantages, spatial resolution, depolarization, chromatic aberration, and chemical imaging aspects of this new technique are discussed in detail.  相似文献   

19.
In accordance with the recent studies, Raman spectroscopy is well experimented as a highly sensitive analytical and imaging technique in biomedical research, mainly for various disease diagnosis including cancer. In comparison with other imaging modalities, Raman spectroscopy facilitate numerous assistances owing to its low background signal, immense spatial resolution, high chemical specificity, multiplexing capability, excellent photo stability and non-invasive detection capability. In cancer diagnosis Raman imaging intervened as a promising investigative tool to provide molecular level information to differentiate the cancerous vs non-cancerous cells, tissues and even in body fluids. Anciently, spontaneous Raman scattering is very feeble due to its low signal intensity and long acquisition time but new advanced techniques like coherent Raman scattering (CRS) and surface enhanced Raman scattering (SERS) gradually superseded these issues. So, the present review focuses on the recent developments and applications of Raman spectroscopy-based imaging techniques for cancer diagnosis.  相似文献   

20.
Coherent anti-stokes Raman scattering (CARS) microscopy is a label-free chemical imaging modality capable of interrogating local molecular composition, concentration, and even orientation. In comparison to traditional Raman spectroscopy/imaging, CARS generates signals that are typically orders-of-magnitude stronger, enabling high-throughput and large-area imaging with superior spectroscopic fidelity. In this review, we present an overview of CARS microscopy as applied to polymer science, covering such timely and important topics as drug release and reaction kinetics to 3D molecular structures and orientation. We also discuss outstanding opportunities and challenges to using CARS microscopy as a quantitative measurement method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号