首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
制备了在修复受损组织方面有应用潜能的纳米级聚(甲基丙烯酸羟乙酯/甲基丙烯酸) (P(HEMA/MAA))微凝胶; 采用试管倒转法对不同pH值和浓度的P(HEMA/MAA)微凝胶分散液的凝胶化相转变行为进行了研究; 借助椎板流变仪考察了低浓度和高浓度微凝胶分散液的流变性能, 并对pH触发物理凝胶化相转变机理进行了推测. 结果表明: 在生理pH值环境下, 一定浓度的P(HEMA/MAA)微凝胶分散液可以发生凝胶化相转变形成凝胶态, pH=7时, HEMA/MAA进料摩尔比为8/2的微凝胶分散液凝胶化后得到的凝胶力学性能最佳, 最大弹性模量(G')可达7.58×103 Pa; P(HEMA/MAA)微凝胶颗粒在不同条件下具有不同的溶胀效果, 导致低浓度分散液的表观粘度发生相应的变化, 并由此推测出微凝胶颗粒的溶胀过程由外及内, 分为三个阶段; 高浓度微凝胶分散液发生凝胶化相转变主要是由颗粒间或颗粒与分散介质间形成的空间静电稳定作用和氢键共同作用引起的.  相似文献   

2.
选择含有活性羟基的亲水单体多缩乙二醇单甲基丙烯酸酯(PEGMA)、甲基丙烯酸羟乙酯(HEMA),分别和N-异丙基丙烯酰胺(NIPAM)交联共聚,制备了侧链含有功能性羟基、链长不同的温敏性微凝胶.研究发现,亲水单体HEMA和PEGMA的引入对微凝胶的去溶胀性能有不同的影响,PEGMA的引入使得微凝胶的体积相转变温度升高,微凝胶的去溶胀比随着PEGMA投料比的增加而降低.而HEMA的引入使得微凝胶的体积相转变温度降低;微凝胶的去溶胀比随着HEMA投料比的增加先是增加然后降低,当HEMA的投料比为8mol%时,去溶胀比达到最大.  相似文献   

3.
以N-异丙基丙烯酰胺(NIPAM)、甲基丙烯酸(MAA)为单体,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,制备了温敏性聚(N-异丙基丙烯酰胺)(PNIPAM)和具有温度、pH敏感性的聚(N-异丙基丙烯酰胺-co-甲基丙烯酸)(PNIPAM-MAA)微凝胶。通过测定不同温度和pH条件下微凝胶浊度变化,表征微凝胶的温度及pH敏感性,描述了NaCl浓度和pH对微凝胶体积相转变温度的影响。同时,测定了微凝胶的临界聚沉浓度及临界絮凝温度,表征了微凝胶的稳定性,讨论了影响微凝胶的稳定性因素。  相似文献   

4.
种子溶胀法制备单分散高交联聚苯乙烯微球   总被引:2,自引:0,他引:2  
王东莎  刘彦军 《应用化学》2007,24(11):1289-1294
以分散聚合法制得平均粒径为1.80μm的聚苯乙烯微球为种子,与溶胀剂和单体、交联剂的混合物经二步溶胀聚合法,制备了单分散高交联聚苯乙烯微球。讨论了单体浓度和醇水比对种球的影响,以及溶胀剂的种类、溶胀剂浓度、交联剂浓度、溶胀温度和搅拌速度等因素对交联聚苯乙烯微球粒径及分散系数的影响。用扫描电子显微镜、离心式粒度分析仪及DSC分析测试技术对微球的外观形貌、粒径大小及分布和玻璃化转变温度分别进行了表征。结果表明,当溶胀剂质量分数为25%、交联剂质量分数为23%、溶胀温度30℃、搅拌速度为150r/min时,可制得平均粒径为6.20μm且单分散性较好的高交联聚苯乙烯微球。  相似文献   

5.
利用单体对之间的氢键特殊相互作用,采用一步反应在水相中共聚甲基丙烯酸(MAA)、丙烯酰胺(AM)和交联剂乙二醇二甲基丙烯酸酯(EGDMA),制备了pH响应性共聚物P(MAAco-AM)纳米水凝胶。采用纳米粒度与电位分析仪、傅里叶红外光谱仪、透射电子显微镜、场发射扫描电镜等对P(MAA-co-AM)纳米水凝胶的尺寸、形貌、组成和结构进行了表征。系统研究了反应参数对P(MAA-co-AM)纳米水凝胶的影响。结果表明:当两单体等物质的量投料时所制备的P(MAA-co-AM)纳米水凝胶粒径分布最窄(〈Dh〉=129nm,PDI=0.095),且其粒径随着两单体用量的增加而增大。随着单体加入时间的延长或EGDMA用量的增加,P(MAA-co-AM)纳米水凝胶的粒径逐渐变小。P(MAA-co-AM)纳米水凝胶表现出极好的pH响应性:当介质的pH从4增加到8时,溶胀比高达7,体积扩张了343倍。  相似文献   

6.
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和甲基丙烯酸羟乙酯(HEMA)为单体,N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,过硫酸钾(KPS)为引发剂,采用自由基水溶液聚合法制备P(AMPS-co-HEMA)共聚凝胶,通过傅里叶红外光谱(FT-IR)对材料结构进行了表征.研究单体配比、交联剂的用量、引发剂的用量对共聚凝胶吸水性能的影响,并在此基础上对凝胶的溶胀、吸银及消溶胀性能进行研究.结果表明,当单体摩尔比n(AMPS)∶n(HEMA)=2∶1,交联剂用量ω(MBA)=0.6%,引发剂用量ω(KPS)=0.8%,所制得的凝胶吸水性能最好;凝胶在蒸馏水中的溶胀过程属于松弛平衡扩散;凝胶在AgNO3溶液中60min左右达到消溶胀平衡,且当AgNO3溶液的浓度为0.05mol/L时,银离子吸附量最大,为0.04g/g,消溶胀速率最快.  相似文献   

7.
讨论了微波辐照下带正电荷的自由基引发剂偶氮二异丁基脒盐酸盐(AIBA)引发甲基丙烯酸甲酯(MMA)和甲基丙烯酸2-羟乙酯(HEMA)共聚,用透射电子显微镜、红外光谱仪、差热分析仪等对聚合产物进行表征.结果表明: 两种单体发生了共聚反应,制得均分散、表面洁净的无皂阳离子胶乳粒子;粒子的粒径随着单体HEMA浓度的增加先减小后增加.在微波辐照下共聚反应的速率非常快,几乎所有的反应在20 min之内就能完成.随着单体HEMA浓度的增加,乳液抗电解质稳定性提高.  相似文献   

8.
张卫红  黄怡  田威 《中国科学B辑》2013,(9):1164-1171
本文采用可自去除模板法制备了单分散的聚(N-异丙基丙烯酰胺) (PNIPAM)空心微球, 用透射电子显微镜(TEM)研究了不同工艺条件对微球尺寸和形貌的影响机制. 结果表明, 酸性单体甲基丙烯酸(MAA)的加入量决定了PNIPAM微球空腔的形成速度; 而MAA及表面活性剂十二烷基硫酸钠(SDS)的加入量对空心微球的粒径及空腔大小亦有明显影响. 具体地讲, 当MAA的浓度从1.06 mmol/L增加到4.24 mmol/L时, 空心微球的平均粒径从250 nm左右增加到约450 nm, 内部空腔尺寸从40 nm增加到270 nm; 而当SDS的浓度从0增加到0.62 mmol/L时, 空心微球的平均粒径及内部空腔尺寸分别从450和270 nm降低到320和130 nm. 紫外分光光度计和动态光散射的检测结果显示, 所得PNIPAM空心微球具有受pH控制的温度敏感性.  相似文献   

9.
采用半连续种子乳液聚合法,以甲基丙烯酸(MAA)为壳层亲水功能单体,合成了丙烯酸酯原乳液,并通过喷雾干燥法制得具有可再分散性的聚合物乳胶粉.讨论了原乳液粒子粒径随pH值和MAA量的变化关系;重点研究了MAA量对乳胶粉水分散液稳定性、再分散乳液zeta电位、乳胶粒粒径分布及乳胶粉内部微观形貌的影响,并分析其作用机理.研究结果表明:原乳液粒子粒径随pH值的增大逐渐增大,且MAA含量越高,粒径增幅越大;随MAA量增加,再分散液稳定性增强,zeta电位绝对值增大,平均粒径逐渐变小,乳胶粉再分散性显著改善.透射电子显微镜(TEM)结果显示:当MAA含量较高时,乳胶粉内部出现较大孔径的中空微孔结构.中空微孔结构提供水分向乳胶粉内部扩散通道,因而优化其水分散性,再分散乳液的"绒毛结构"与较高的zeta电位赋予其优异的分散稳定性.  相似文献   

10.
报道了一种采用光化学方法一步合成磁性纳米凝胶的方法. 在亲水性Fe3O4磁流体中, 以甲基丙烯酸2-羟基乙酯(HEMA)为单体, N,N-亚甲基双丙稀酰胺(MBA)为交联剂, 紫外光辐照下原位聚合制备了聚(甲基丙烯酸2-羟基乙酯)(PHEMA)磁性纳米凝胶. 运用红外光谱(FTIR)和热重分析(TGA)检测了磁性凝胶的化学组成, 得出其磁含量高达90%; 磁性测量表明凝胶呈现超顺磁性; 扫描电子显微镜(SEM)和透射电子显微镜(TEM)观测了其表面形貌和粒径, 通过光子相关光谱(PCS)得出其平均水合粒径及粒径分布, 发现外壳层凝胶有大的溶胀能力. 通过单体浓度、光照时间对磁性纳米凝胶粒径的影响研究, 发现可以调控磁性纳米凝胶的平均水合粒径在55.4~144.5 nm范围内变化, 并对可能的包敷机制进行了探索.  相似文献   

11.
pH-responsive microgels are crosslinked polymer particles that swell when the pH approaches the pK(a) of the ionic monomer incorporated within the particles. In recent work from our group it was demonstrated that the mechanical properties of degenerated intervertebral discs (IVDs) could be restored to normal values by injection of poly(EA/MAA/BDDA) (ethylacrylate, methacrylic acid and butanediol diacrylate) microgel dispersions [J.M. Saunders, T. Tong, C.L. Le Maitre, T.J. Freemont, B.R. Saunders, Soft Matter 3 (2007) 486]. In this work we report the pH dependent swelling and rheological properties of poly(MMA/MAA/EGDMA) (methylmethacrylate and ethyleneglycol dimethacrylate) microgel dispersions. This system was investigated because it contains monomers that are already used as biomaterials. The poly(MMA/MAA/EGDMA) particles exhibit pH-triggered volume swelling ratios of up to ca. 250. The swelling onset for these particles occurs at pH values greater than ca. 6.0. A pK(a) for these particles of ca. 6.7 is consistent with titration and swelling data. Fluid-to-gel phase diagrams for concentrated poly(MMA/MAA/EGDMA) dispersions were determined as a function of polymer volume fraction and pH using tube-inversion measurements. The rheological properties for the gelled microgel dispersions were investigated using dynamic rheology measurements. The elastic modulus data for the poly(MMA/MAA/EGDMA) gelled dispersions were compared to data for poly(EA/MAA/BDDA) microgels. A similar pH-dependence for the elastic modulus was apparent. The maximum elastic modulus was achieved at a pH of about 7.0. The elastic modulus is an exponentially increasing function of polymer volume fraction at pH 7.0. Preliminary cell challenge experimental data are reported that indicate that gelled poly(MMA/MAA/EGDMA) microgel dispersions are biocompatible with cells from human intervertebral discs. However, the duration over which these experiments could be performed was limited by gradual redispersion of the gelled microgel dispersions. Based on the results presented it is suggested that poly(MMA/MAA/EGDMA) microgel would be a good candidate as a biomaterial for structural support of soft connective tissues.  相似文献   

12.
pH-responsive microgels are cross-linked polymer colloids that swell when the pH approaches the pK a of the particles. In this work, we present a comprehensive investigation of pH-triggered particle swelling and gel formation for a range of microgels containing methacrylic acid (MAA). The microgels investigated have the general composition poly(A/MAA/X), where A and X are the primary co-monomer and cross-linking monomer, respectively. The primary co-monomers were methyl methacrylate (MMA), ethyl acrylate (EA) or butyl methacrylate. The cross-linking monomers were either butanediol diacrylate (BDDA) or ethyleneglycol dimethacrylate (EGDMA). The microgels were studied using scanning electron microscopy, photon correlation spectroscopy (PCS) and dynamic rheology measurements. Gel phase diagrams were also constructed. The particles swelled significantly at pH values greater than approximately 6.0. It was shown that poly(EA/MAA/X) microgels swelled more strongly than poly(MMA/MAA/X) microgels. Furthermore, greater swelling occurred for particles prepared using EGDMA than BDDA. Concentrated dispersions of all the microgels studied exhibited pH-triggered gel formation. It was found that the fluid-to-gel transitions for the majority of the six microgel dispersions investigated could be explained using PCS data. In those cases, gelation was attributed to a colloidal glass transition. Interestingly, the microgels that were considered to have the highest hydrophobic content gelation occurred under conditions where little particle swelling was evident from PCS. The data presented show that gelled poly(EA/MAA/BDDA) and poly(MMA/MAA/EGDMA) microgel dispersions have the strongest elasticities at pH = 7.  相似文献   

13.
pH-responsive microgel dispersions contain cross-linked polymer particles that swell when the pH approaches the pKa of the ionic monomer incorporated within the particles. In recent work from our group, it was demonstrated that the mechanical properties of degenerated intervertebral discs (IVDs) could be restored to normal values by injection of pH-responsive microgel dispersions (Saunders, J. M.; Tong, T.; LeMaitre, C.; Freemont, A. J.; Saunders, B. R. Soft Matter 2007, 3, 486). These dispersions change from a fluid to a gel with increasing pH. The present work investigates the pH-dependent properties of dispersions of microgel particles containing MAA (methacrylic acid) and also the effects of added Ca2+. Two microgels are discussed: microgel A is poly(EA/MAA/AM) (EA and AM are ethyl acrylate and allyl methacrylate), and microgel B is poly(EA/MAA/BDDA) (butanediol diacrylate). The pH-dependent particle properties investigated include hydrodynamic diameters and electrophoretic mobilities. The critical coagulation concentrations (CCC) of dilute dispersions and the elastic modulus (G') of concentrated, gelled microgel dispersions were also investigated. In the absence of added Ca2+, the particle swelling and G' were smallest and largest, respectively, for microgel A. The changes in hydrodynamic diameter and mobility with pH were explained in terms of a core-shell swelling mechanism. Added Ca2+ was found to significantly decrease the CCCs, extents of particle swelling, and magnitude of the electrophoretic mobility. This was attributed to the ionic cross-linking of neighboring RCOO- groups by Ca2+. It is suggested that the formation of ionic cross-links is inefficient within the microgel particles because of the presence of covalent cross-links that oppose the large-scale conformational rearrangement of neighboring RCOO- groups. The effect of Ca2+ on the properties of the gelled dispersions is important from the viewpoint of potential application in vivo. Rheological studies of the gelled microgel dispersions showed that added Ca2+ did not have a specific influence on G'. The differences observed in the presence of Ca2+ were attributed to ionic strength effects (screening). The key parameter that controls G' of the gelled microgel dispersions is pH. The results from this work suggest that the elasticity of the gels would be slightly reduced in vivo as a consequence of the high ionic strength present.  相似文献   

14.
In this research, a series of pH-responsive microgels based on acrylamide (AM), acrylic acid (AA) as the main monomers, and N,N′-methylenebisacrylamide as a divinyl cross-linking agent, have been prepared by inverse microemulsion polymerization. The effect of chemical composition of poly(acrylamide-co-acrylic acid) (P(AM-co-AA)) on hydrodynamic diameters, morphology, swelling ratios and pH-responsive behaviour and thermal properties of microgels were discussed. With an increase of the mole percentages of AA in the feed ratio, the microgels have higher swelling ratios. The TEM photographs show that the spherical morphology of the microgels are regular relatively. Comparing with PAM microgels, number-average diameters of P(AM-co-AA) microgels were larger because of the presence of AA chain segment in the polymer chain. Turbidities of microgels determined through UV–vis spectrophotometer indicate that the microgels exhibit favourable pH-responsive behaviour, and responsive pH value is related to the dissociation constant of AA. Moreover, thermal stable properties of microgels were confirmed by differential scanning calorimeter. It was observed that an increase in the mole percentages of AA in the feed ratio provided lower glass transition temperature and thermal decomposition temperature of pH-responsive microgels.  相似文献   

15.
pH-responsive microgels are crosslinked polymer colloids that swell when the pH approaches the pK a of the particles. They have potential application for injectable gels for tissue repair and drug delivery systems. This study focuses on the pH-triggered gelation behaviour of a series of poly (EA/MAA/X) microgels. EA and MAA are ethylacrylate and methacrylic acid. Here, we investigate the effect of crosslinking monomer type (X) on microgel properties. The crosslinking monomers used were poly (ethyleneglycol) dimethacrylate (PEGD), ethyleneglycol dimethacrylate (EGD) and butanediol diacrylate (BDD). The microgel containing PEGD (m-PEGD) is a new system. The microgel containing BDD (m-BDD) was used as a control system. The concentrated microgel dispersions formed physical gels when the pH was increased to 5.3?C6.7, and the polymer volume fractions (? p ) were above about 0.05. Evidence from photon correlation spectroscopy (PCS) and dynamic rheology was presented for abrupt pH-triggered increases, and then decreases of the hydrodynamic diameters for m-PEGD and the microgel prepared using EGD (m-EGD). This appears to be tuneable through crosslinker structure. An unexpected gelation behaviour, which may involve a new gel state for microgels, was found for m-PEGD dispersions. Uniquely, those dispersions formed gels at pH values less than the microgel's pK a . This behaviour was linked to an outer-shell electrostatic repulsive interaction. The data point to a phenomenon, whereby the m-PEGD shells appear to explode at pH values above 7.0. The control microgel prepared, using BDD (m-BDD), did not show any evidence of shell fragmentation at any pH. That microgel has potential as a model pH-responsive microgel system in that the properties measured by PCS and rheology agreed well. To probe that system in more detail, the rheological data for m-BDD was analysed using scaling theory. The variation of the storage modulus (G') with ? p gave a scaling exponent of 2.0.  相似文献   

16.
This study investigates the effects of added Ca(2+) on the properties of poly(Bd/MAA) dispersions (1,3-butadiene and methacrylic acid) and considers the effect of particle composition on the pK(a). Four latex dispersions are considered in detail. These include poly(Bd/6MAA) and poly(Bd/20MAA) which contain, 6 and 20 wt% MAA, respectively, based on the total monomer mass used for dispersion preparation. Two model systems are also used for comparison. These are poly(Bd) and poly(EA/33MAA/BDDA) (EA and BDDA are ethyl acrylate and butanediol diacrylate). The latter is a well-studied model pH-responsive microgel. The apparent pK(a) of the poly(Bd/MAA) dispersions was determined from potentiometric titrations and found to increase with Bd content. The pH-dependence of the particle size was studied using photon correlation spectroscopy. Electrophoretic mobility measurements were also used. The hydrodynamic diameters and mobilities exhibited major changes as the pH approached the pK(a) for the particles. The critical coagulation concentrations were also measured. The results indicate that Ca(2+) caused pronounced dispersion instability at low pH. Moreover, Ca(2+) prevents swelling of the poly(Bd/MAA) particles at high pH. It was found that efficient ionic binding of all of the RCOO(-) groups within the poly(Bd/20MAA) particles occurred when the mole ratio of RCOO(-) to Ca(2+) was less than or equal to 2.0. Consideration of all the data leads to the suggestion that poly(Bd/MAA) particles have a core-shell structure. It is suggested that the particle core contains mostly poly(Bd) and that the shell is comprised of lightly crosslinked poly(Bd-co-MAA) copolymer.  相似文献   

17.
Since it is presumed that by incorporation of pH-responsive (IA) and temperature-responsive (OEGA) co-monomers, it is possible to prepare P(HEMA/IA/OEGA) hydrogels with dual (pH and thermo) responsiveness, the main purpose of our study is to investigate the influence of different mole fractions of IA and especially OEGA on the diversity of the swelling properties of the obtained hydrogels. For that reason, a series of terpolymeric hydrogels with different mole ratios of 2-hydroxyethyl methacrylate (HEMA), itaconic acid (IA) and oligo(ethylene glycol) acrylates (OEGA) was synthesised by gamma radiation. The obtained hydrogels were characterised by swelling studies in the wide pH (2.2–9.0) and temperature range (20–70 °C), confirming dual (pH and thermo) responsiveness and a large variation in the swelling capability. It was observed that the equilibrium swelling of P(HEMA/IA/OEGA) hydrogels, for a constant amount of IA, increased progressively with an increase in OEGA share. On the other hand, the dissociation of carboxyl groups from IA occurs at pH>4; therefore, small mole fractions of IA render good pH sensitivity and a large increase in the swelling capacity of these hydrogels at higher pH values. Additional characterisation of structure and properties was conducted by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and mechanical measurements, confirming that the inherent properties of P(HEMA/IA/OEGA) hydrogels can be significantly tuned by variation in their composition. According to all presented, it seems that the obtained hydrogels can be a beneficial synergetic combination for controlled delivery of bioactive molecules such as drugs, peptides, proteins, etc.  相似文献   

18.
Emulsion polymerization of 2-(diethylamino)ethyl methacrylate (DEA) in the presence of a bifunctional cross-linker at pH 8-9 afforded novel pH-responsive microgels of 250-700 nm diameter. Both batch and semicontinuous syntheses were explored using thermal and redox initiators. Various strategies were evaluated for achieving colloidal stability, including charge stabilization, surfactant stabilization, and steric stabilization. The latter proved to be the most convenient and effective, and three types of well-defined reactive macromonomers were examined, namely, monomethoxy-capped poly(ethylene glycol) methacrylate (PEGMA), styrene-capped poly[2-(dimethylamino)ethyl methacrylate] (PDMA50-St), and partially quaternized styrene-capped poly[2-(dimethylamino)ethyl methacrylate] (10qPDMA50-St). The resulting microgels were pH-responsive, as expected. Dynamic light scattering and 1H NMR studies confirmed that reversible swelling occurred at low pH due to protonation of the tertiary amine groups on the DEA residues. The critical pH for this latex-to-microgel transition was around pH 6.5-7.0, which corresponds approximately to the known pKa of 7.0-7.3 for linear PDEA homopolymer. The microgel particles were further characterized by electron microscopy and aqueous electrophoresis studies. Their swelling and deswelling kinetics were investigated by turbidimetry. The PDEA-based microgels were compared to poly[2-(diisopropylamino)ethyl methacrylate] (PDPA) microgels prepared with identical macromonomer stabilizers. These PDPA-based microgels had a lower critical swelling pH of around pH 5.0-5.5, which correlates with the lower pKa of PDPA homopolymer. In addition, the kinetics of swelling for the PDPA microgels was somewhat slower than that observed for PDEA microgels; presumably this is related to the greater hydrophobic character of the former particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号