首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NaA zeolite membranes were synthesized on an asymmetric porous alumina support with a lower mass-flow resistance for development of more economically feasible membranes with higher permeation performance. The support influence on permeation fluxes through the membrane using asymmetric support was investigated by vapor permeation at 100–145 °C in a mixture of water (10 wt.%)/ethanol (90 wt.%) in which the higher permeation fluxes up to 37 kg m−2 h−1 or water permeances up to 3.2 × 10−6 mol m−2 s−1 Pa−1at 145 °C were observed. The performance was higher than those in the previously reported NaA membrane on a monolayer porous alumina support of 31 kg m−2 h−1 or water permeances of 2.5 × 10−6 mol m−2 s−1 Pa−1at 145 °C. These results are experimental evidence to show the effect of asymmetric support utilization in membrane preparation on the higher membrane performance. The estimate of the pressure drop over the both types of support indicates that the improvement of higher permeation fluxes in the asymmetric type membrane could be attributed to the suppression of pressure drop in the support layer due to lower mass-flow resistance there.  相似文献   

2.
A thermal stable composite membrane was prepared by interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC) on poly(phthalazinone ether amide) (PPEA) ultrafiltration membrane. The effect of reaction parameters on the performance of composite membranes was studied and optimized. The surface morphologies of the composite membrane and the substrate were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The rejection of optimized composite membrane for dyes Congo red (CGR) and Acid chrome blue K (ACBK), the molecular weight (MW) of which is over 400, was over 99.2%, with a flux at about 180 L m−2 h−1. While the rejection for NaCl was only 18.2% with a flux over 270 L m−2 h−1, when tested at 1.0 MPa 60 °C. The composite membrane was applied in the desalination-purification experiment of dye ACBK and NaCl mixed solution. The flux of the membrane increased obviously as the operation pressure and/or temperature increased, while the rejection for dye was constant and kept over 99.3%. The purification experiments were accomplished effectively at 1.0 MPa, 80 °C. Only after five rounds of desalination-concentration experiment, about 160 min, the salt mixed in dye solution was fully removed. The initial flux of the eighth cycle was about 254 L m−2 h−1, which was only 20 L m−2 h−1 lower than that of the first round. The rejection of the membrane was constant and kept over 99.3% through out the eight cycles of purification experiment.  相似文献   

3.
Electrostatic multilayers of chitosan (CHI)/sodium alginate (SA) and CHI/poly(styrene sulfonate) sodium salt (PSS) were alternatively coated on electrospun cellulose acetate (CA) fiber mat. Morphologies of the composite membranes were characterized by scanning electron microscopy. The morphology of the CHI/SA-coated membrane was denser than the CHI/PSS-coated one. The top layers consisted of carboxyl and sulfonic functional groups for SA and PSS layers, respectively. Amino groups of CHI were only presented in slight quantity. X-ray photoelectron spectroscopy (XPS) confirmed the deposition of the amino groups of CHI on the multilayer membrane surface. These composite membranes were characterized for its water permeability where the water flux decreased with an increase in the number of the bilayers. The water flux was in the range of 60 and 40 L m−2 h−1 for 15 and 25 bilayered membranes, respectively. The sodium chloride (NaCl) solution flux was lower than the pure water flux due to the effect of osmotic pressure, and it decreased with an increase in the NaCl concentration. The rejection of NaCl increased substantially with the number of the bilayers of the polyelectrolytes multilayers. The level of NaCl rejection from this work was in the range of 6% and 15% for 15 and 25 bilayered membranes, respectively.  相似文献   

4.
NaA zeolite microfiltration (MF) membranes were prepared on α-Al2O3 tube by in situ hydrothermal synthesis method and investigated for water separation and recovery from oily water. NaA/α-Al2O3 MF membranes with average inter-particle pore sizes of 1.2 μm, 0.4 μm and 0.2 μm were prepared. The membranes were characterized by scanning electron microscope (SEM) and the inter-particle pore size distribution (PSD) was determined by gas bubble pressure method. Membranes with pore sizes of 1.2 μm (NaA1) and 0.4 μm (NaA2) were used to treat an oil-in-water emulsion containing 100 mg/L oil. Better than 99% oil rejection was obtained and water containing less than 1 mg/L oil was produced at 85 L m−2 h−1 by NaA1 at a membrane pressure of 50 kPa. Consistent membrane performance was maintained by a regeneration regime consisting of frequent backwash with hot water and alkali solution.  相似文献   

5.
Novel organic–inorganic hybrid membranes were prepared through sol–gel reaction of poly(vinyl alcohol) (PVA) with γ-aminopropyl-triethoxysilane (APTEOS) for pervaporation (PV) separation of ethanol/water mixtures. The membranes were characterized by FTIR, EDX, WXRD and PALS. The amorphous region of the hybrid membranes increased with increasing APTEOS content, and both the free volume and the hydrophilicity of the hybrid membranes increased when APTEOS content was less than 5 wt%. The swelling degree of the hybrid membranes has been restrained in an aqueous solution owing to the formation of hydrogen and covalent bonds in the membrane matrix. Permeation flux increased remarkably with APTEOS content increasing, and water permselectivity increased at the same time, the trade-off between the permeation flux and water permselectivity of the hybrid membranes was broken. The sorption selectivity increased with increasing temperature, and decreased with increasing water content. In addition, the diffusion selectivity and diffusion coefficient of the permeants through the hybrid membranes were investigated. The hybrid membrane containing 5 wt% APTEOS has highest separation factor of 536.7 at 50 °C and permeation flux of 0.0355 kg m−2 h−1 in PV separation of 5 wt% water in the feed.  相似文献   

6.
This paper investigates the microfiltration of skim milk in order to separate caseins micelles from two whey proteins, α-lactalbumin (α-La) and β-lactoglobulin (β-Lg), using a modified dynamic filtration pilot (MSD) consisting in 6 ceramic 9-cm diameter membrane disks of 0.2 μm pores, rotating around a shaft inside cylindrical housing. A comparison was made with another dynamic filtration module consisting in a disk rotating near a fixed PVDF 15.5 cm diameter membrane with 0.15 μm pores. Maximum permeate fluxes were 120 L h−1 m−2 with the MSD module at 1930 rpm and at 40 °C, and 210 L h−1 m−2 at 2500 rpm and 45 °C, with the rotating disk module. Casein rejection was around 99% at high speed for both membranes. α-La transmission decreased with increasing transmembrane pressure (TMP) from 75% to 60% for ceramic membranes and from 25% to 10% for the PVDF one. β-Lg transmissions were lower, ranging from 23% to 15% for ceramic membranes and from 20% to 5% for the PVDF one. In a concentration test with the PVDF membrane at 2000 rpm, the flux decayed from 200 L h−1 m−2 at initial concentration to 80 L h−1 m−2 at VRR = 3.2 and 22.1% of the initial α-La mass was recovered in the permeate, against 8.1% for β-Lg. Permeate fluxes in the mass transfer limited regime (Jlim) of the MSD and rotating disk module operated at various speeds were well correlated by the equation Jlim = 17.13 Vav where Vav denoted the disk azimuthal velocity averaged over the membrane area. Measurements of Jlim, taken from Ref. [G. Samuelsson, P. Dejlmek, G. Tragardh, M. Paulsson, Minimizing whey protein retention in crossflow microfiltration of skim milk. Int. Dairy J. 7 (1997) 237–242] during MF of skim milk using tubular ceramic membranes at velocities from 1.5 to 8 m s−1 with permeate co-current recirculation were found to obey the same correlation.  相似文献   

7.
将3-氨丙基三乙氧基硅烷(APTES)引入到T型分子筛膜表面,用以修饰多晶膜合成过程中产生的缺陷。X射线衍射、场发射扫描电子显微镜、X射线光电子能谱和FT-IR等方法的表征结果显示,APTES通过“键合”的形式被成功地修饰到膜表面上。APTES层起到2个作用:一是提高膜的亲水性;二是减少膜层的缺陷。将修饰后的膜应用在348 K、90%的异丙醇水溶液的脱水时,该膜表现出比较高的分离因子和通量。该方法重复性良好,5个修饰后的膜样品的选择性平均增加了大约8倍(从359±23增加到2 934±183),而渗透通量仅仅从(3.52±0.10) kg·m-2·h-1降低到(3.06±0.14) kg·m-2·h-1(减少13.07%)。在363 K下,修饰的膜经过100 h的连续测试,膜渗透测得的水含量均可达到99.50%以上,表明修饰后的膜性能较稳定。  相似文献   

8.
Novel nanofiltration (NF) membrane was developed from hydroxyl-ended hyperbranched polyester (HPE) and trimesoyl chloride (TMC) by in situ interfacial polymerization process using ultrafiltration polysulfone membrane as porous support. Fourier transform infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (CA) measurements were employed to characterize the resulting membranes. The results indicated that the crosslinked hyperbranched polyester produced a uniform, ultra-thin active layer atop polysulfone (PSf) membrane support. FTIR-ATR spectra indicated that TMC reacted sufficiently with HPE. Water permeability and salts rejection of the prepared NF membrane were measured under low trans-membrane pressures. The resulting NF membranes exhibited significantly enhanced water permeability while maintaining high rejection of salts. The salts rejection increase was accompanied with the flux decrease when TMC dosage was increased. The flux and rejection of NF 1 for Na2SO4 (1 g/L) reached to 79.1 l/m2 h and 85.4% under 0.3 MPa. The results encourage further exploration of NF membrane preparation using hyperbranched polymers (HBPs) as the selective ultra-thin layer.  相似文献   

9.
The all silica DDR membrane turns out to be well suited to separate water from organic solvents under pervaporation conditions, despite its hydrophobic character. All-silica zeolites are chemically and hydrothermally more stable than aluminum containing ones and are therefore preferred for membrane applications, including for dehydration, even though these type of membranes are hydrophobic. Permeation of water, ethanol and methanol through an all-silica DDR membrane has been measured at temperatures ranging from 344 to 398 K. The hydrophobic membrane shows high water fluxes (up to 20 kg m−2 h−1). The pure water permeance is insensitive to temperature and is well described assuming weak adsorption. Excellent performance in dewatering ethanol (N=2N=2 kg m−2 h−1and αw=1500αw=1500 at 373 K and xw=0.18xw=0.18) is observed and the membrane is also able to selectively remove water from methanol (N=5N=5 kg m−2 h−1 and αw=9αw=9). Water could also be removed from methanol/ethanol/water (αwater/EtOH=1500αwater/EtOH=1500, αMeOH/EtOH=70αMeOH/EtOH=70 at 373 K) mixtures, even at water feed concentrations below 1.5 mol%.  相似文献   

10.
A TiO2 membrane supported on a planar porous Ti–Al alloy was prepared by combination of electrophoretic deposition and dip-coating. In the electrophoretic deposition process, the membrane thickness increased linearly with the square root of the deposition time, while increased with decrease of the suspension viscosity. The perfect TiO2/Ti–Al composite membrane was obtained by further dip-coating modification. SEM images showed that the surface of the membrane was defect-free. XRD result indicated that rutile TiO2 still remained in the membrane bulk as the main phase, while a new phase titanium oxides with the form of TixOy, where y is less than 2x, was also observed. The supported TiO2/Ti–Al composite membrane had an average pore size of 0.28 μm, a thickness of 40 μm or so and a pure water flux of 3037 L m−2 h−1 bar−1.  相似文献   

11.
PDMS-Ni2+Y zeolite hybrid membranes were fabricated and used for the pervaporation removal of thiophene from model gasoline system. The structural morphology, mechanical stability, crystallinity, and free volume characteristics of the hybrid membranes were systematically investigated. Molecular dynamics simulation was employed to calculate the diffusion coefficients of small penetrants in the polymer matrix and the zeolite. The effect of Ni2+Y zeolite content on pervaporation performance was evaluated experimentally. With the increase of Ni2+Y zeolite content, the permeation flux increased continuously, while the enrichment factor first increased and then decreased possibly due to the occurrence of defective voids within organic–inorganic interface region. The PDMS membrane containing 5.0 wt% Ni2+Y zeolite exhibited the highest enrichment factor (4.84) with a permeation flux of 3.26 kg/(m2 h) for 500 ppm sulfur in feed at 30 °C. The effects of operating conditions on the pervaporation performance were investigated in detail. It has been found that the interfacial morphology strongly influenced the separation performance of the hybrid membrane, and it was of great significance to rationally modify the interfacial region in order to improve the organic–inorganic compatibility.  相似文献   

12.
Although having shown great promise for efficient water treatment, rational structural design and engineering of polycrystalline MOF membranes remain rarely investigated so far. In this study, we prepared well-intergrown MOF-801 membranes with tailorable structural deficiencies in the framework for application in dye rejection. Of particular note, we found that the addition of formic acid as modulator led to the formation of MOF-801 membrane with higher missing-linker number, which was beneficial for increasing water flux with little compromise in dye rejection rate. The MOF-801 membrane prepared in this work exhibited excellent dye rejection performance (CR rejection rate of 99.50 % and water flux of 31.69 L m−2 h−1 bar−1) as well as excellent long-term stability.  相似文献   

13.
Solid phase microextraction (SPME) was characterized for the sampling and analysis of sesquiterpenes (SQTs) emitted by plants. Constant mixing ratio SQT standards were produced using a capillary diffusion system. Polydimethylsiloxane SPME fibers were characterized with respect to relative absorption of SQTs, and the effects of sample linear velocity and sample relative humidity on SQT absorption. SPME was then utilized to measure SQT emissions from gray pine (Pinus sabiniana) and ponderosa pine (Pinus ponderosa). Total SQT emission rates at a photosynthetic photon flux density of 1200 μmol m−2 s−1 and 28 °C ranged 0.025–0.050 μgC m−2 h−1 (α-farnesene) and 0.450–3.325 μgC m−2 h−1 (α-farnesene, β-farnesene, and α-bergamotene) for gray pine and ponderosa pine, respectively.  相似文献   

14.
A microwave-assisted persulfate oxidation method followed by ion chromatographic determination of nitrate was developed for total nitrogen determination in atmospheric wet and dry deposition samples. Various operating parameters such as oxidation reagent concentrations, microwave power, and extraction time were optimized to maximize the conversion of total nitrogen to nitrate for subsequent chemical analysis. Under optimized conditions, 0.012 M K2S2O8 and 0.024 M NaOH were found to be necessary for complete digestion of wet and dry deposition samples at 400 W for 7 min using microwave. The optimized extraction method was then validated by testing different forms of organic nitrogen loaded to pre-baked filter substrates and NIST SRM 1648 (urban particulate matter), and satisfactory results were obtained. In the case of wet deposition samples, standard addition experiments were performed. The suitability of the method for real-world application was assessed by analyzing a number of wet and dry deposition samples collected in Singapore during the period of March-April 2007. The organic nitrogen content was 15% (wet) and 30% (dry) of the total nitrogen. During the study period, the estimated wet fluxes for nitrate (NO3), ammonium (NH4+), organic nitrogen (ON), and total nitrogen (TN) were 16.1 ± 6.5 kg ha−1 year−1, 11.5 ± 5.7 kg ha−1 year−1, 3.8 ± 1.5 kg ha−1 year−1and 31.5 ± 13.2 kg ha−1 year−1, respectively, while the dry fluxes were 2.5 ± 0.8 kg ha−1 year−1, 1.4 ± 0.9 kg ha−1 year−1, 2.3 ± 1.4 kg ha−1 year−1 and 7.5 ± 2.6 kg ha−1 year−1, respectively.  相似文献   

15.
含氟体系中,在负载晶种的大孔莫来石支撑体表面快速合成了高性能且取向生长的T型分子筛膜。采用XRD、SEM和MAS NMR等手段对分子筛膜层和粉末进行表征。讨论了添加物、氟硅比、合成温度和合成时间等条件对膜生长与分离性能的影响,并阐述了含氟体系中T型分子筛膜快速晶化的机理。碱金属氟盐的加入促进了T型分子筛晶体层的晶化速率,并对晶体层形貌产生了一定的影响。膜应用于75℃、水/异丙醇(10∶90,w/w)体系的平均渗透通量和分离因子分别为(4.91±0.18)kg·m-2·h-1和7 060±1 130。  相似文献   

16.
含氟体系中,在负载晶种的大孔莫来石支撑体表面快速合成了高性能且取向生长的T型分子筛膜。采用XRD、SEM和MASNMR等手段对分子筛膜层和粉末进行表征。讨论了添加物、氟硅比、合成温度和合成时间等条件对膜生长与分离性能的影响,并阐述了含氟体系中T型分子筛膜快速晶化的机理。碱金属氟盐的加入促进了T型分子筛晶体层的晶化速率,并对晶体层形貌产生了一定的影响。膜应用于75℃、水/异丙醇(10:90,w/w)体系的平均渗透通量和分离因子分别为(4.91±0.18)kg·m-2·h-1和7060±1130。  相似文献   

17.
Cardo polyetherketone (PEK-C) composite membranes were prepared by casting glutaraldehyde (GA) cross-linked sulfonated cardo polyetherketone (SPEK-C) or silicotungstic acid (STA) filled SPEK-C and poly(vinyl alcohol) (PVA) blending onto a PEK-C substrate. The compatibility between the active layer and PEK-C substrate is improved by immersing the PEK-C substrate in a GA cross-linked sodium alginate (NaAlg) solution and using water–dimethyl sulfoxide (DMSO) as a co-solvent for preparing the STA-PVA-SPEK-C/GA active layer. The pervaporation (PV) dehydration of acetic acid shows that permeation flux decreased and separation factor increased with increasing GA content in the homogeneous membranes. The permeation flux achieved a minimum and the separation factor a maximum when the GA content increased to a certain amount. Thereafter the permeation flux increased and the separation factor decreased with further increasing the GA content. The PV performance of the composite membranes is superior to that of the homogeneous membranes when the feed water content is below 25 wt%. The permeation activation energy of the composite membranes is lower than that of the homogeneous membranes in the PV dehydration of 10 wt% water in acetic acid. The STA-PVA-SPEK-C-GA/PEK-C composite membrane using water–DMSO as co-solvent has an excellent separation performance with a flux of 592 g m−2 h−1 and a separation factor of 91.2 at a feed water content of 10 wt% at 50 °C.  相似文献   

18.
Polyelectrolytes were incorporated into porous reinforcing materials to study the properties of ionomers in confined spaces and to determine the effect of the porous material on the behaviour of the membranes. Nafion® was imbibed into porous polypropylene (Celgard®), ultra-high-molecular weight polyethylene (Daramic®), and polytetrafluoroethylene (PTFE) films. Through the use of reinforcing materials, it is possible to prepare membranes that are thinner, but stronger than pure ionomer membranes. Thin reinforced membranes have advantages such as lower areal resistance (as low as 0.14 Ω cm2 for 57 μm CG3501 + Nafion® compared to 0.34 Ω cm2 for 89 μm cast Nafion®) and lower dimensional changes due to swelling (as low as a 4% change in length and width for WDM + Nafion® compared to 13% for cast Nafion®). Using reinforcing materials results in a reduction in important membrane properties compared to bulk Nafion®, such as proton conductivity (as low as 0.016 S cm−1 for CG3401 + Nafion® compared to 0.076 S cm−1 for cast Nafion®), effective proton mobility (as low as 3.2 × 10−4 cm2 V−1 s−1 CG3401 + Nafion® compared to 7.6 × 10−4 cm2 V−1 s−1 for cast Nafion®), and water vapour permeance (as low as 0.036 g h−1 Pa−1 m−2 for WDM + Nafion® compared to 0.056 g h−1 Pa−1 m−2 for cast Nafion®). By normalizing the membrane properties with respect to ionomer content, it was possible to examine the properties of the Nafion® inside the pores of the membranes. The proton conductivity (as low as 0.032 S cm−1 for CG3401 + Nafion®), effective proton mobility (as low as 3.6 × 10−4 cm2 V−1 s−1 for CG3401 + Nafion®), and water vapour permeability (as low as 2.7 × 10−6 g h−1 Pa−1 m−1 for PTFE MP 0.1 + Nafion®) of the ionomer in the membrane are also diminished compared to bulk Nafion® due to decreased connectivity of the ionomer and a restriction in macromolecular motions caused by the pore walls. A series of porous materials with increasing pore were also examined. As the pore size of the PTFE MP materials increased from 0.1 μm to 10 μm, the proton conductivity (0.022 S cm−1 to 0.041 S cm−1), effective proton mobility ((4.1 to 5.6) × 10−4 cm2 V−1 s−1), and water vapour permeability ((2.4 to 4.3) × 10−6 g h−1 Pa−1 m−1) of the reinforced membranes improved with increasing pore size and the properties of the ionomer inside the membranes approached the value of bulk Nafion®.  相似文献   

19.
Potential fouling reducing coating materials were synthesized via free-radical photopolymerization of aqueous solutions of poly(ethylene glycol) diacrylate (PEGDA). Crosslinked PEGDA (XLPEGDA) exhibited high water permeability and good fouling resistance to oil/water mixtures. Water permeability increased strongly with increasing the water content in the prepolymerization water mixture, going from 10 to 150 L μm/(m2 h bar) as prepolymerization water content increased from 60 to 80 wt.%. However, molecular weight cutoff decreased as water content increased. These materials were applied to polysulfone (PSF) UF membranes to form coatings on the surface of the PSF membranes. Oil/water crossflow filtration experiments showed that the coated PSF membranes had water flux values 400% higher than that of an uncoated PSF membrane after 24 h of operation, and the coated membranes had higher organic rejection than the uncoated membranes.  相似文献   

20.
Volatile organic compounds (VOCs) were monitored in the different sections of a wastewater treatment plant (WWTP), the outlet of both the WWTP and rainfall water, and the downstream of the WWTP joining the river in the area or vicinity of an industrial science park located in Hsinchu, Taiwan. Levels of VOCs were determined by collecting air samples over several sampling points and analyzed using gas chromatography. Among VOCs identified in the drainage and effluent system in each season, acetone, isopropanol (IPA) and dimethyl sulfide (DMS) were the major emission species and maximum concentrations were 400.4, 22.8 and 641.2 ppbv, respectively. The ambient air and wastewater sample analysis from neighboring wastewater streams identified pollutants being discharged from unaccounted sources other than the industrial park. According to the 24 h semi-continuous monitoring data (27/7/2002-29/7/2002), the total VOC concentration was an average of 93 ppbv (acetone contributed ∼78%) with a dramatic variation during the day and night. The emission rate of measured VOCs estimated using fixed box model projected an average of 2-4 μg m−2 h−1) during the day and 9-17 μg m−2 h−1 during the night. In addition, the isopleth maps show that the acetone and DMS emissions influence adversely the nearby residential area located at less than 100 m downwind from the plant. Eventually, based on this study, an on-line monitoring and alerting system could be built for a long-term performance, and with regular information on the varying pollutants over time construction of a green strategy and creation of a sustainable environment can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号