首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
李芬  郭楷瑞  薛志刚 《高分子通报》2023,(11):1570-1579
凝胶聚合物电解质作为一种高锂离子传导效率的聚合物电解质而备受关注。然而,制备凝胶聚合物电解质的过程仍存在催化剂难以脱除、流程繁琐等问题。在本工作中,采用离子液体1-丁基-3-甲基咪唑四氟硼酸盐(BMIMBF4)中潜在的Lewis酸诱导乙烯基醚类单体发生阳离子聚合的策略,探究出一种在电池内部原位构建高性能凝胶聚合物电解质的方法。BMIMBF4的引入提升了凝胶聚合物电解质的电导率和电化学稳定性,基于该凝胶聚合物电解质的锂对称电池能在0.1 mA·cm-2电流密度下循环500 h。由该凝胶聚合物电解质原位组装的全电池以1 C的倍率进行恒流充放电,循环100圈后容量保持率为90%;即使在10 C的高倍率下时,电池的放电比容量仍能保持在67.5 mAh·g-1。该自催化策略为凝胶聚合物电解质的快速构建提供了新的思路。  相似文献   

2.
Bi2Te3钾离子电池负极存在结构不稳定性和电化学反应动力学缓慢问题。本研究在手风琴状MXene基底上生长棒状Bi2Te3,随后利用P掺杂制备了高性能P-Bi2Te3/MXene超结构。这种新型负极具有丰富的Te空位和良好的自适应特性,展现出优异的循环稳定性(在0.2 A·g-1电流密度下200次循环后可逆容量为323.1 mAh·g-1)和出色的倍率能力(20 A·g-1时可逆容量为67.1 mAh·g-1)。动力学分析和非原位表征表明,该超结构具有优异的赝电容特性、出色的K+离子扩散能力以及可逆的嵌入反应和转化反应机理。  相似文献   

3.
以钛酸四丁酯为源, 采用苯胺-丙酮原位生成水溶胶-凝胶法, 在乙醇超临界干燥过程中用部分水解的钛醇盐和硅醇盐对TiO2凝胶进行超临界修饰制备了具有核/壳纳米结构的块体TiO2/SiO2复合气凝胶. 制备的复合气凝胶具有优异的机械性能, 其杨氏模量可达4.5 MPa. 复合气凝胶同时具有极好的高温热稳定性. 经过1000 ℃热处理后, 线性收缩由纯TiO2气凝胶的31%降至复合气凝胶的10%, 且比表面积由纯TiO2气凝胶的31 m2·g-1提升至复合气凝胶的143 m2·g-1. 此外, 该复合气凝胶经1000 ℃热处理后具有优异的光催化降解亚甲基蓝的性能. 其优异的光催化性能得益于TiO2/SiO2复合气凝胶1000 ℃处理后高的比表面积和小的颗粒尺寸. 优良的耐热性能、力学性能和光催化性能使获得的具有核/壳纳米结构的TiO2/SiO2复合气凝胶在光催化领域具有良好的应用前景.  相似文献   

4.
以羟基纳米纤维素为原料,利用其表面丰富的羟基还原KMnO 4,在纳米纤维表面原位生成MnO2纳米颗粒,并与Super P混合,通过简单抽滤的方式获得CNF@MnO2/Super P自支撑正极。结果表明:无粘结剂的CNF@MnO2/Super P自支撑正极具有较高的循环稳定性,在0.5 A·g-1的电流密度下,循环800圈后,容量仍能达到247 mAh·g-1;均匀分布的纳米MnO2与Super P能够有效缩短离子和电子扩散路径,大大降低材料的电阻,使正极具有良好的倍率性能,在2 A·g-1的电流密度下,循环300圈之后,电池容量仍保持在175 mAh·g-1,库仑效率~99%;利用该正极良好的延展性,制备了软包电池,并表现出了较高的循环稳定性和容量保持率,该工作为柔性无粘结剂的水系Zn-MnO2二次电池的设计开发提供了新的研究思路。  相似文献   

5.
转换型正极材料(FeF2)因高具有理论比容量、廉价与环境友好等优点而有望成为新一代锂离子电池正极材料,但其目前却受到本征导电性差、界面副反应与结构衰减等问题的严重制约。对此,本文利用静电纺丝技术将水溶性高分子聚合物负载金属氟化物前驱体,经预氧化和碳化处理后得到了内嵌FeF2纳米颗粒的导电碳纤维复合材料(FeF2@NFP),并探究了针对FeF2@NFP静电纺丝工艺的最佳碳化温度。在充/放电过程中,FeF2@NFP的碳基质可以发挥限域作用来抑制转换反应造成的体积变化和相分离等问题,从而稳定活性物质的结构,同时导电碳纤维可以为电子传输提供“快速通道”来改善FeF2的导电性。因此,FeF2@NFP作为锂离子电池正极材料在0.1 A·g-1电流密度下表现出了261.55 mAh·g-1的首次可逆比容量以及优异的循环稳定性,在100个循环后仍有243.20 mAh·g-1的剩余可逆...  相似文献   

6.
通过静电纺丝和静电喷射技术, 将三氧化二铝(Al2O3)纳米颗粒沉积在两层聚四氟乙烯六氟丙烯[P(VDF-HFP)]静电纺丝隔膜之间, 制备出了具有“三明治”结构的P(VDF-HFP)/Al2O3/P(VDF-HFP)复合锂离子电池隔膜. 分析了隔膜的形态结构、 热收缩性能、 拉伸性能、 电化学性能以及隔膜在电池中的循环性能. 测试结果表明, 该复合隔膜比纯P(VdF-HFP)膜拥有更高的吸液率, 隔膜更容易吸收电解液从而形成凝胶聚合物电解质(GPEs). 该复合隔膜的拉伸强度在4 MPa左右, 相对应的断裂伸长率为261.57%. 复合隔膜在室温下的离子电导率为1.61×10-3 S/cm, 且表现出了较高的电化学稳定性(电化学稳定窗口达到5.4 V). 在电池的循环测试中, 使用钴酸锂(LiCoCO2)作为正极材料, 由该复合隔膜组装的电池的首次放电比容量达到了理想的水平, 为145 mA·h·g-1.  相似文献   

7.
锂硫电池具有高能量密度、低成本和环境友好等优势,有望满足市场日益增长的需求。然而,其正极材料中的活性物质硫存在溶解穿梭等问题,限制了锂硫电池的大规模应用。本文利用氧化石墨(GO)作为碳源、升华硫作为硫源,通过微波诱导等离子体技术(MIP)快速高效(30-40 s)地制备得到了还原氧化石墨烯负载硫纳米颗粒锂硫电池复合正极材料(rGO@S),其中,rGO褶皱卷曲、相互连接的层片状结构,有利于电解液中的锂离子向电极材料中扩散和迁移,同时有利于提高电极材料的导电性,且rGO上的含氧官能团也能够起到对硫纳米颗粒的固定作用,有利于电极材料循环稳定性的提升。得益于其独特的形貌结构,rGO@S在电池测试中表现出优异的倍率性能和良好的循环稳定性。在0.1 A·g-1的电流密度下,rGO@S的可逆比容量为1036 mAh·g-1,当电流密度增大到8 A·g-1其可逆比容量仍高达832 mAh·g-1,且经过8 A·g-1的超大电流密度充放循环,当电流密度回到0.1 A·g-1...  相似文献   

8.
新型多孔碳纳米片/碳纳米管(PC/CNT)材料表现出丰富的分级孔隙结构,具有较高的氧化锡(SnO2)负载量。通过PC和CNT交联形成的三维结构能够有效地提高锂离子传输速率和电子的传导。此外,在电极中掺杂的氟化锂(LiF)不仅能够降低SnO2-PC/CNT-LiF电极的电荷转移电阻,而且还能补充SEI膜形成时消耗的Li+,降低不可逆容量,增强SEI膜的稳定性。研究表明,SnO2-PC/CNT-LiF电极在电流密度为100 mA·g-1时,首次可逆比容量达到1642.98 mAh·g-1,活性物质的利用率高达90.12%,循环100次后,放电比容量仍然达到745.11 mAh·g-1,且库仑效率仍然保持在95.1%以上,显示出优异的倍率和循环性能。  相似文献   

9.
以磷酸二氢钠(NaH2PO4)为磷源, 通过溶剂热法制备了P掺杂的TiO2/C (P-TiO2/C)纳米管以改善TiO2的储锂性能. 电化学测试表明: P-TiO2/C负极具有高的比容量(在0.1 A•g-1的电流密度下达到335 mAh•g-1)、优异的倍率性能(在2.0 A•g-1的电流密度下为92 mAh•g-1)及循环性能(在1.0 A•g-1的电流密度下经过1000次循环后放电比容量仍维持在135 mAh•g-1). 并且, P-TiO2/C在2 mV•s-1时的赝电容贡献约为96%. 由P-TiO2/C负极和活性炭正极组装的锂离子电容器在250 W•kg-1的功率密度下能量密度能够达到74.7 Wh•kg-1. 此外, 该锂离子电容器在10000次循环后比电容保持率约为43%. 此外, 该器件在1.0 A•g-1下循环10000次后充满电仍可点亮18只红色的LED灯组成的“LIC”字样. 该工作为高性能锂离子电容器TiO2负极材料的设计提供了思路.  相似文献   

10.
选择合适的生物质材料是获得功能碳材料的有效途径之一。通过柠檬酸钾和三聚氰胺一步热解法制备了高氮掺杂多孔碳纳米纤维(NPCF)。在电流密度为0.1和1.0 A·g-1时,NPCF电极的容量分别为218和140 mAh·g-1。同时,具有NPCF阳极的钠离子电容器(SIC)在1.0 A·g-1下表现出优异的倍率性能和超长的使用寿命,可循环超过2 500次。  相似文献   

11.
杨淳  赵欣悦  张灵志 《无机化学学报》2021,37(11):1922-1930
以二氧化硅(SiO2)为模板,结合静电纺丝与溶胶-凝胶法制备了多孔碳纳米纤维膜(PCNFS),再通过熔融扩散法负载硒,制备了一种柔性的碳/硒复合电极(Se@PCNFS)。结合X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对材料的微观结构和形貌进行表征,结果显示多孔碳纤维直径约300 nm,硒均匀地嵌入碳纤维膜的孔洞中。电化学测试结果表明,1Se@PCNFS电极在锂硒电池中表现出优异的循环性能和倍率性能。在0.5C倍率下,初始放电比容量达到569 mAh·g-1,循环500次后比容量为340 mAh·g-1;在2C倍率时,比容量为403 mAh·g-1。  相似文献   

12.
以纳米Si颗粒为核心,正硅酸四乙酯(TEOS)为SiO2源,采用Stober法在Si表面包覆一层SiO2,再以多巴胺为碳源,通过碳化处理将SiO2表面的聚多巴胺层转化成碳层。最后,用HF刻蚀SiO2并留下空隙,得到Si@void@C复合纳米颗粒。利用X射线衍射、扫描电镜、透射电镜和恒流充放电测试对材料的物相、微观形貌和电化学性能进行表征。结果表明,在0.1 A·g-1电流密度下,Si@void@C负极材料充放电循环100次后充电比容量仍然有1 319.5 mAh·g-1,容量保持率为78.4%,表现出优异的电化学性能。  相似文献   

13.
针对硅氧基负极材料的主要缺陷,在SiOx/石墨基负极材料中巧妙地引入了Si-Fe、SnO2合金化合物,以改善其电化学性能,并通过机械球磨、喷雾干燥和高温热解策略制备了一系列硅氧基复合负极材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱仪(EDS)和恒流充放电测试仪对复合材料的物相、微观形貌及电化学性能进行了表征。电化学测试结果表明,复合质量分数5% Si-Fe的目标材料充电容量高达443.4 mAh·g-1,首次库仑效率达75.2%,循环310圈之后容量仍有369.1 mAh·g-1,容量保持率为81.0%(相对第11圈);同时,经Si-Fe复合之后,锂离子扩散速率得到了明显改善。  相似文献   

14.
针对硅氧基负极材料的主要缺陷,在SiOx/石墨基负极材料中巧妙地引入了Si-Fe、SnO2合金化合物,以改善其电化学性能,并通过机械球磨、喷雾干燥和高温热解策略制备了一系列硅氧基复合负极材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱仪(EDS)和恒流充放电测试仪对复合材料的物相、微观形貌及电化学性能进行了表征。电化学测试结果表明,复合质量分数5% Si-Fe的目标材料充电容量高达443.4 mAh·g-1,首次库仑效率达75.2%,循环310圈之后容量仍有369.1 mAh·g-1,容量保持率为81.0%(相对第11圈);同时,经Si-Fe复合之后,锂离子扩散速率得到了明显改善。  相似文献   

15.
以偏苯三甲酸和六水合硝酸钴为原料,通过水热法合成了2种反应时间不同的钴基金属有机聚合物(Co-MOP)。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和N2吸附-脱附对Co-MOP材料进行了结构和形貌表征。将2种Co-MOP材料用作锂离子电池负极材料,并进行了电化学性能测试。结果表明,Co-MOP-12(水热反应12 h)展示出了优异的电化学性能,在100 mA·g-1的电流密度下,Co-MOP-12电极的首圈可逆比容量达到979 mAh·g-1,循环100圈后比容量高达1 345 mAh·g-1。  相似文献   

16.
将棕榈纤维经过炭化和氢氧化钾活化制备高度有序的管状碳材料(OCT),并且将其应用于锂硫电池。所制备的OCT具备高的比表面积和大的孔体积,可以有效地储存硫,合成方法简单且成本较低。同时,所制备的S@OCT复合物呈现出优异的电化学性能。载硫量为65%(w/w)的S@OCT复合材料在0.2C(1C=1 672 mA·g-1)的倍率下库伦效率接近于100%,其首圈容量高达1 255.2 mAh·g-1(1.8 mAh·cm-2),并且100圈后容量保持在756.9 mAh·g-1(1.09 mAh·cm-2)。使用5C的大电流测试时,其首圈容量达到了649.1 mAh·g-1(0.93 mAh·cm-2),且在100圈后容量保持在504.2 mAh·g-1(0.72 mAh·cm-2)。  相似文献   

17.
以气相法白炭黑(FS)为Si前驱体,通过镁热还原工艺和对获得的NPs-Si进行SiOx和C复合包覆,制备出NPs-Si@SiOx@C纳米复合结构,将其用作锂电池负极进行电化学性能测试。研究结果表明:镁热还原过程分两步进行,即SiO_2与Mg先生成Mg2Si中间相,Mg2Si继续与SiO_2反应生成Si的反应路径;根据此规律镁热还原气相法白炭黑的Si转化率达87.9%。电化学性能测试中NPs-Si@SiOx@C负极在2.0 A·g-1的电流密度下有1 300 mAh·g-1的容量平台,1 000次循环后的放电比容量为964.2mAh·g-1,容量保持率达75%。  相似文献   

18.
以纳米Si颗粒为核心,正硅酸四乙酯(TEOS)为SiO_2源,采用Stober法在Si表面包覆一层SiO_2,再以多巴胺为碳源,通过碳化处理将SiO_2表面的聚多巴胺层转化成碳层。最后,用HF刻蚀SiO_2并留下空隙,得到Si@void@C复合纳米颗粒。利用X射线衍射、扫描电镜、透射电镜和恒流充放电测试对材料的物相、微观形貌和电化学性能进行表征。结果表明,在0.1 A·g~(-1)电流密度下,Si@void@C负极材料充放电循环100次后充电比容量仍然有1 319.5 mAh·g~(-1),容量保持率为78.4%,表现出优异的电化学性能。  相似文献   

19.
采用碳布(CC)为柔性基底,通过水热法制备了MnO2/CC及N掺杂MnO2/CC无黏结剂负极材料,借助X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、比表面积测试和恒电流充放电对材料进行了结构表征及电化学性能测试。结果表明N掺杂MnO2/CC具有良好的倍率性能和循环稳定性。在0.1 A·g-1的电流密度下,其首次充电比容量为948.8 mAh·g-1,经过不同倍率测试后电流密度恢复至0.1 A·g-1时仍然保持有907.9 mAh·g-1的可逆比容量,容量保持率为95.7%。在1 A·g-1的大电流密度下,其首次充电比容量为640.3 mAh·g-1,循环100次后仍然保持有529.9 mAh·g-1的可逆比容量,容量保持率为82.8%,可逆比容量远高于商用MnO2。  相似文献   

20.
以碳布(CC)作为柔性基底,采用水热法在其表面原位生长松针状网络结构NiCo2O4,制得NiCo2O4@CC复合材料,并应用于锂硫电池。NiCo2O4在碳纤维表面竖直生长形成三维纳米针簇网络,为硫的存储提供更多的空间,有效缓解硫电极的体积膨胀。通过吸附实验,证明了NiCo2O4@CC能有效吸附多硫化物,从而抑制多硫化物的穿梭效应。与CC/S相比(933 mAh·g-1),NiCo2O4@CC/S复合材料用于锂硫电池具有更优异的电池性能,在0.1C下初始放电比容量高达1 467 mAh·g-1,在0.2C下初始放电比容量为1 098 mAh·g-1,经200次循环后,放电比容量仍然保持在879 mAh·g-1,平均每圈衰减率为0.09%,表现出良好的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号