首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous titanate sols were prepared by reactions of titanium tetraisopropoxide (TIP) with -hydroxycarboxylic acids in water. IR and Raman spectra, and elemental analyses of the precipitates obtained from the sols revealed that the carboxylates were chelated to titanium but the Ti species were polymerized to form a cluster that had a colloidal nature. Spin-coating of titania (TiO2) thin films from these sols was also examined. Interestingly, it was found that (004) preferentially oriented anatase films with refractive index of 2.54 were obtained from TIP-lactic acid-NH3 (1:1:1, molar ratio) aqueous sol. This crystallographic orientation was characteristic of the TIP-lactic acid-NH3 (1:1:1) system, and was not affected by the kinds of substrates used and the heating rate of the film. TEM observation indicated that small anatase grains had already formed at 200°C. Therefore, the crystallographic orientation might depend strongly on the structure of the chemical species of the precursor solutions.  相似文献   

2.
In this work, the mechanochemical synthesis of a moderately agglomerated tin oxide (SnO2) powders and the subsequent preparation of semiconductor gas sensors as prototypes, were studied. Tin (II) chloride (SnCl2) powder was milled with calcium hydroxide (Ca(OH)2) and potassium carbonate, (K2CO3) powder, respectively, in a ball mill at room temperature and in an air atmosphere. Heat treatment of milled mixtures at 400 °C resulted in the formation of a tetragonal phase, confirmed by X-ray diffraction (XRD). During milling in the presence of water, a high number of hydroxide (OH) groups are formed at the surface. When SnCl2 was milled with K2CO3, no water was produced and the Fourier-transform infrared spectrum (FT-IR) of the powder has no surface hydroxyl deformations. On exposure to hydrogen sulfide (H2S) gas, the particles, prepared from anhydrous powder, have higher sensitivity than these, prepared from hydrated powder. The SnO2 thick film, prepared from anhydrous powder may be successfully applied to a H2S gas sensor.  相似文献   

3.
Oriented monoclinic WO3 thin films were fabricated by sol–gel method using aqueous sols of colloidal layered tungstates. The colloidal tungstate sols were prepared by reacting different alkylamines with layered tungstic acid H2WO4 in water. With decreasing the alkyl chain length of the alkylamines, the colloidal layered tungstate became smaller. Alkylamines with a short alkyl chain provided transparent aqueous sols. Furthermore, the WO3 thin films fabricated from the obtained aqueous sols had a high (100)-orientation. However, upon annealing H2WO4 crystals applied on a glass substrate with the tungstate layers parallel to the substrate, highly (001)-oriented WO3 layers were obtained. Since both of the A- and C-planes of WO3 have a similar structure to the layers of H2WO4, the orientation of the WO3 thin films and layers probably resulted from the topotactic structural conversion of the tungstates. Interestingly, the preferential orientation of the thin films was dependent on the presence or absence of interlayer alkylamines in the tungstates.  相似文献   

4.
Various methods for the preparation of metal oxide catalysts for environmental control purposes are described. These include coprecipitation, sol-gel, and impregnation, and are used to prepare mixed oxide catalysts of the types SnO2-MO2 (M=Ce or Zr), SnO2-Ln2O3 (Ln = lanthanide), Ln-doped CeO2, Cr (VI)-doped SnO2, and Cu(II)-doped SnO2. The aggregation in stable colloidal sols of SnO2, CeO2 and ZrO2 is dependent on the concentration of the metal oxide. Techniques for the characterisation of these catalyst materials include gas adsorption, X-ray diffraction, and TEM/EDXA.  相似文献   

5.
ZnO/TiO2/SnO2 mixture was prepared by mixing its component solid oxides ZnO, TiO2 and SnO2 in the molar ratio of 4?1?1, followed by calcining the solid mixture at 200-1300 °C. The products and solid-state reaction process during the calcinations were characterized with powder X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and Brunauer-Emmett-Teller measurement of specific surface area. Neither solid-state reaction nor change of crystal phase composition took place among the ZnO, TiO2 and SnO2 powders on the calcinations up to 600 °C. However, formation of the inverse spinel Zn2TiO4 and Zn2SnO4 was detected at 700-900 and 1100-1200 °C, respectively. Further increase of the calcination temperature enabled the mixture to form a single-phase solid solution Zn2Ti0.5Sn0.5O4 with an inverse spinel structure in the space group of . The ZnO/TiO2/SnO2 mixture was photocatalytically active for the degradation of methyl orange in water; its photocatalytic mass activity was 16.4 times that of SnO2, 2.0 times that of TiO2, and 0.92 times that of ZnO after calcination at 500 °C for 2 h. But, the mass activity of the mixture decreased with increasing the calcination temperature at above 700 °C because of the formation of the photoinactive Zn2TiO4, Zn2SnO4 and Zn2Ti0.5Sn0.5O4. The sample became completely inert for the photocatalysis after prolonged calcination at 1300 °C (42 h), since all of the active component oxides were reacted to form the solid solution Zn2Ti0.5Sn0.5O4 with no photocatalytic activity.  相似文献   

6.
Homogeneous xSiO2-(1−x)ZrO2 coatings have been prepared onto glass-slides, monocrystalline Si and stainless steel (AISI 304) using sols prepared via acid and basic catalysis. Zirconium tetrabutoxide (TBOZr), zirconium n-propoxide (TPZ), tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) were used as precursors of zirconia and silica, respectively. The different parameters involved in the synthesis procedure, as molar ratios H2O/alkoxides, NaOH/alkoxides, and sintering temperature have been analysed, correlating the stability and rheological properties of the sols. The evolution and structure of the sols and coatings have been studied by FTIR. Coatings have been prepared by dipping from acid and basic sols. Electrophoretic Deposition (EPD) technique has also been used to prepare coatings onto stainless steel from basic particulate sols in order to increase the critical thickness. A maximum thickness of 0.5 μ m was reached by both dipping and EPD process for 75SiO2: 25 ZrO2 composition. The critical thickness decreases with ZrO2 amount depending strongly of the drying conditions. Si–O–Zr bonds have been identified by FTIR, indicating the existence of mixed network Si–O–Zr in the coatings obtained by the different routes. Crystallisation of ZrO2(t) was only observed at high sintering temperature (900C) by FTIR and confirmed by DRX.  相似文献   

7.
Nanocrystalline TiO2 samples with mesoporous structure were prepared via a solvothermal treatment of surfactant-stabilized TiO2 sols. The samples were obtained from media of different acidities including nitric acid, deionized water, and ammonia (denoted as HT-1, HT-2 and HT-3, respectively). These samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2-sorption (BET surface area), micro-Raman spectroscopy, infrared absorption spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples were tested by the self-photosensitized degradation of an azo dye, Mordant Yellow 10 (MY), in aqueous solution under visible light irradiation. The results reveal that all three samples have high surface area and are pure anatase phase. The sample prepared in nitric acid medium possesses the most ideal mesoporous structure and also exhibits a blue shift in the Raman spectrum. All three samples show much higher photocatalytic activity than the commercial P-25. The activity order of the three samples is HT-1>HT-2>HT-3.  相似文献   

8.
Nanosized Zn2SnO4 (ZTO) particles were successfully synthesized by a simple hydrothermal process in water/ethylene glycol mixed solution using amines (ethylamine, n-butylamine, n-hexylamine, and n-octylamine) as mineralizer. The products were characterized by X-ray diffractions (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption. The results indicated that the hydrothermal conditions, such as alkaline concentration (n-butylamine), reaction temperature, solvent composition, and the kind of amines, had an important influence on the composition, crystallinity, and morphology of the product. The as-synthesized ZTO samples exhibited high activities and durabilities for photodegradation of methyl orange and the activities were mainly affected by the crystallinities of the samples. A hexagonal-shaped ZTO (H-ZTO) sample was prepared in 0.53 M of n-butylamine solution at 180 °C for 20 h and its optical properties were characterized by UV-Vis diffuse reflectance and Photoluminescence (PL) spectra. Furthermore, the photocatalytic H2 evolution reaction from ethanol aqueous solution over H-ZTO was also investigated.  相似文献   

9.
Highly stable TiO2 sols were prepared by adjusting the water-to-titanium molar ratio to ~4 in the process of hydrolysis and condensation of titanium isopropoxide in ethanol with HNO3. Particularly, long-term stable TiO2 sols were prepared without adding any chemical additives. Anatase TiO2 nanocrystallites with sizes of 3–5 nm in diameter were uniformly dispersed in the stable sol. Crystallized TiO2 films were successfully deposited on Si (100) using the stable sol via a dip-coating process with low temperature curing at as low as 100 °C. The synthesized TiO2 sols and films are promising for use in flexible or dye-sensitized solar cells.  相似文献   

10.
Nanostructured TiO2–SnO2 thin films and powders were prepared by a facile aqueous particulate sol–gel route. The prepared sols showed a narrow particle size distribution with hydrodynamic diameter in the range 17.2–19.3 nm. Moreover, the sols were stable over 5 months, since the constant zeta potential was measured during this period. The effect of Sn:Ti molar ratio was studied on the crystallisation behaviour of the products. X-ray diffraction analysis revealed that the powders were crystallised at the low temperature of 400 °C containing anatase-TiO2, rutile-TiO2 and cassiterite-SnO2 phases, depending on annealing temperature and Sn:Ti molar ratio. Furthermore, it was found that SnO2 retarded the anatase to rutile transformation up to 800 °C. The activation energy of crystallite growth was calculated in the range 0.96–6.87 kJ/mol. Transmission electron microscope image showed that one of the smallest crystallite sizes was obtained for TiO2–SnO2 binary mixed oxide, being 3 nm at 600 °C. Field emission scanning electron microscope analysis revealed that the deposited thin films had nanostructured morphology with the average grain size in the range 20–40 nm at 600 °C. Thin films produced under optimized conditions showed excellent microstructural properties for gas sensing applications. They exhibited a remarkable response towards low concentrations of CO gas at low operating temperature of 200 °C, resulting in increased thermal stability of sensing films as well as a decrease in their power consumption.  相似文献   

11.
A novel red emitting phosphor, Eu3+-doped Ca2SnO4, was prepared by the solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the formation of Ca2SnO4: Eu3+. Field-emission scanning electron-microscopy (FE-SEM) observation indicated a narrow size-distribution of about 500 nm for the particles with spherical shape. Photoluminescence measurements indicated that the phosphor exhibits bright red emission at about 615 nm under UV excitation. The excellent luminescence properties make it possible as a good candidate for plasma display panels (PDP) application. Splitting of the 5D0-7FJ transitions of Ca2SnO4: Eu3+ suggests that the Eu3+ ions occupied two nonequivalent sites in the crystallite. The luminescence lifetime measurement showed a bi-exponential decay, providing other evidence for the existence of two different environments for Eu3+ ions.  相似文献   

12.
Sol-gel thin coatings of ZrO2, SiO2, 70SiO2-30TiO2 and 88SiO2-12Al2O3 compositions (mole %) have been prepared from sonocatalyzed sols and deposited by dip-coating technique on 316L stainless steel foils. The influence of the coatings on the chemical corrosion of the substrate has been measured through potentiodynamic polarization curves in aqueous 15% H2SO4 solution between 25 and 50°C. The values of the corrosion potential, polarization resistance and corrosion rate have been determined. Analysis of the data combined with scanning electron microscopy studies indicate that the films act as a geometric blocking against exposure to the corrosive media and increase the lifetime of the substrate up to a factor 8.5.  相似文献   

13.
Titania-lanthanum phosphate nanocomposites with multifunctional properties have been synthesized by aqueous sol-gel method. The precursor sols with varying TiO2:LaPO4 ratios were applied as thin coating on glass substrates in order to be transparent, hydrophobic, photocatalytically active coatings. The phase compositions of the composite powders were identified by powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). The anatase phase of TiO2 in TiO2-LaPO4 composite precursors was found to be stable even on annealing at 800 °C. The glass substrates, coated with TL1 (TiO2-LaPO4 composition with 1 mol% LaPO4) and TL50 (composite precursor containing TiO2 and LaPO4 with molar ratio 1:1) sols and annealed at 400 °C, produced contact angles of 74° and 92°, respectively, though it is only 62° for pure TiO2 coating. The glass substrates, coated with TL50 sol, produced surfaces with relatively high roughness and uneven morphology. The TL1 material, annealed at 800 °C, has shown the highest UV photoactivity with an apparent rate constant, kapp=24×10−3 min−1, which is over five times higher than that observed with standard Hombikat UV 100 (kapp=4×10−3 min−1). The photoactivity combined with a moderate contact angle (85.3°) shows that this material has a promise as an efficient self-cleaning precursor.  相似文献   

14.
TiO2 films with a thickness of 75 ± 5 nm (anatase) were formed on SnO2-film (580 ± 80 nm) coated soda-lime glass substrates (SnO2/SL-glass) by a sol-gel method. Although the photocatalytic activity for CH3CHO oxidation (ex > 300 nm) significantly exceeded that of a standard TiO2/quartz sample, it decayed with illumination time (t) at t > 0.75 h. Stripes of anatase TiO2 films of 40 nm in thickness and 1 mm in width were prepared on the SnO2/SL-glass substrate in a 1-mm pitch by photolysis of an organically modified sol-gel film. The TiO2 patterning further increased the photocatalytic activity by a factor of 4.1 as compared to the non-patterned sample, and it was also maintained at 0 < t < 2 h. The flat band potentials of the TiO2 and SnO2 films are determined to be –0.34 and +0.07 V (vs. SHE), respectively, at pH = 7 by the Mott-Schottky plots. On the basis of the results, the outstanding patterning effects could be rationalized in terms of the vectorial charge separation at the interface between TiO2 and SnO2.  相似文献   

15.
SiO2-ZrO2 sols have been prepared via acid catalysis using a commercial colloidal suspension of zirconia and two silica alkoxides; tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES). Suspensions with 10, 15 and 25-mol% of ZrO2 were prepared. The stability of the suspensions was followed by rheological measurements showing that the amount of water incorporated with the colloidal suspension is the factor that limits the maximum ZrO2 content. Coatings have been prepared by dipping using the suspensions up to 25-mol% ZrO2 onto glass-slides at different withdrawal rates. EPD process has been used to prepare coatings onto stainless steel AISI 304 using the suspension with 25-mol% ZrO2 at different pHs. The parameters associated with the EPD process (current density, electric field, potential and deposition time) have been evaluated. The critical thickness for a ZrO2 addition of 25-mol% was 0.8 μm and it increased for diminishing ZrO2 content.  相似文献   

16.
Photocatalysts of TiO2 and La-doped TiO2 were prepared by calcining the pure TiO2 sols and the sols mixed with La(NO3)3⋅6H2O at 873 K, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. As results, the BET surface area, pore diameter, mesopore volume and micropore volume slightly increased, while the crystallite size and the phase structure were little affected by lanthanum doping. The equilibrium adsorption of methylene blue (MB) on the photocatalysts were measured in a dark room. The adsorption isotherms were confirmed to fit to the Langmuir theory. Photocatalytic activities of the photocatalysts were studied by employing the photocatalytic degradation of MB in water and degradation of acetaldehyde in air under UV-irradiation using a black light. Kinetic analysis revealed that the rate controlling steps could be the surface reaction of the adsorbed MB on the catalyst surface for MB degradation and the reaction of adsorbed acetaldehyde with the gaseous acetaldehyde for degradation of acetaldehyde, respectively.  相似文献   

17.
Santos LS  Landers R  Gushikem Y 《Talanta》2011,85(2):1213-1216
This work describes the in situ immobilization of Mn(II) phthalocyanine (MnPc) in a porous SiO2/SnO2 mixed oxide matrix obtained by the sol gel processing method. The chemically modified matrix SiO2/SnO2/MnPc, possessing an estimated amount of 8 × 10−10 mol cm−2 of MnPc on the surface, was used to prepare an electrode to analyze dissolved oxygen in water by an electrochemical technique. The electrode was prepared by mixing the material with ultrapure graphite and evaluated using differential pulse voltammetry. Dissolved O2 was reduced at −0.31 V with a limit of detection (LOD) equal to 7.0 × 10−4 mmol L−1. A mechanism involving four electrons in O2 reduction was determined by the rotating disk electrode technique.  相似文献   

18.
SnO2/SiO2 composite nanoparticles were prepared by sol–gel-hydrothermal process and their physico-chemical structure and photocatalytic property were investigated. The results of XRD, TEM and FT-IR indicated that SnO2 crystallites with the tetragonal rutile structure were well-developed directly during hydrothermal process. The SnO2/SiO2 composite nanoparticles owned narrow size distribution, large specific surface area, and good thermal stability. As the presence of 25.0 wt% SiO2, the SnO2 nanoparticles were about 4.0 nm in diameter and the specific surface area was 259.0 m2/g. After calcination at 800 °C, the crystalline grain size maintained 16.2 nm and the surface area still remained 132.6 m2/g. The SnO2/SiO2 composite nanoparticles showed better photocatalytic activity than pure SnO2 nanoparticles.  相似文献   

19.
Stabilised titania sols were prepared using an additive free particulate sol-gel route, via electrostatic stabilisation mechanism, with various processing parameters. Peptisation temperature, 50°C and 70°C, and TiO2 concentration, 0.1, 0.2 and 0.4 molar, were chosen as processing parameters during sol preparation. Results from TiO2 particle size and zeta potential of sols revealed that the smallest titania hydrodynamic diameter (13 nm) and the highest zeta potential (47.7 mV) were obtained for the sol produced at the lower peptisation temperature of 50°C and lower TiO2 concentration of 0.1 M. On the other hand, between the sols prepared at 70°C, smaller titania particles (20 nm) and higher zeta potential (46.3 mV) were achieved with increasing TiO2 concentration up to 0.4 M. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) results of produced powders annealed at different temperatures showed that the 300°C annealed powder made from 0.1 M sol prepared at 50°C was a mixture of anatase and brookite, corresponding to a major phase of anatase (∼95% estimated), with the smallest average crystallite size of 1.3 nm and the highest specific surface area (SSA) of 193 m2/g. Furthermore, increasing TiO2 concentration up to 0.4 molar for the sols prepared at 70°C resulted in decreasing the average crystallite size (1.9 nm at 300°C) and increasing SSA (116 m2/g at 300°C) of the powders annealed at different temperatures. Anatase-to-rutile phase transformation temperature was increased with decreasing peptisation temperature down to 50°C, whereas TiO2 concentration had no effect on this transition. Anatase percentage increased with decreasing both peptisation temperature and TiO2 concentration. Such prepared powders can be used in many applications in areas from photo catalysts to gas sensors.  相似文献   

20.
A new method of preparing concentrated alumo-sols, the hydrolysis of Al-tri-sec-butylate in acidic aqueous media at 85°C, was studied in detail by varying the H2O/Al- and NO3 /Al-ratios in wide ranges. The components of the sols were characterized by 27Al NMR spectroscopy. The pH-value depends on both the chosen H2O/Al- and NO3 /Al-ratio and on the aging time of the sols and reflects the composition of the sols. Al13 polycations were detected in sols with a pH-value between 3.0 and 3.7. As a new result its presence was shown by NMR below 3.4. The Al13 content of the sols increased with pH and the maximum fraction of Al13 polycations was detected in the sol with the highest pH (3.7). Nearly 65% of the entire aluminium content of this solution is bound in the Al13 polycations. Hence, a new synthetic method for the preparation of Al13 ions containing sols was developed. Aging studies of the sols showed, that the Al13 polycations were more stable in solutions with higher pH-value. Al13 polycations were detected after an aging time of four months only in sols with a pH-value of 3.7. Tempering the aged sols at 40° to 80°C caused formation of Al13 and also of Al30 polycations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号