首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2,3,5,6-四(吡啶-2-基)吡嗪(tppz)是一类非常具有吸引力的三联吡啶类配体。tppz金属配合物在分子电子学、生物化学、磁学、催化和分子传感器等领域都具有潜在的应用前景。本文着重对tppz金属配合物近年来在应用领域的研究现状进行综述。  相似文献   

2.
合成了两种金属配合物{[Cu2(pztc)(4,4'-bpy)(H2O)4]·6H2O}n (1),{(H2bpe)[Cd(pztc)(H2O)2]·2.5H2O}n (2)(H4pztc=吡嗪-2,3,5,6-四甲酸,bpy=4,4'-联吡啶,bpe=1,2-二(4-吡啶基)乙烯),测定了其晶体结构,并对其进行了红外光谱、荧光光谱和热重分析等表征。两种配合物均为二维层状结构,但其中吡嗪四酸的配位方式不同。配合物2具有蓝色的荧光,最大荧光发射峰在475 nm。测试了配合物1的电子顺磁共振谱,结果显示Cu2+的特征谱带。  相似文献   

3.
四甲基吡嗪经溴代和酯化反应得到2,3,5-三乙酰氧甲基-6-甲基吡嗪(4)和2,3,5,6-四乙酰氧甲基吡嗪(5);4和5分别经水解得2,3,5-三羟甲基-6-甲基吡嗪和2,3,5,6-四羟甲基吡嗪。其结构经UV,1H NMR,13C NMR,IR和MS表征。  相似文献   

4.
近年来,配位聚合物由于在光学,电学,磁学,催化,分离.吸附等方面具有潜在的功能性,已成为当前最具挑战力的热点研究领域之一 [1~9].因此,进一步合成具有特定结构和功能的配合物具有非常重要的意义和价值.2-甲基吡嗪-5-羧酸(2-mpac)是一类非常好的有机配体,由于结合了吡嗪和羧基二者的配位特点,从而呈现丰富的配位模式,所以常常用来合成具有不同结构和性质的配合物 [10~15].  相似文献   

5.
Eu-Calix-2Ar膜修饰电极的制备及其电化学研究   总被引:1,自引:0,他引:1  
杯芳烃由于具有多个紧密相邻的羟基和一个 π体系空穴 ,使得杯芳烃几乎能与所有的金属形成配合物[1] .这些金属配合物由于具有优良的催化、光电、分子识别性能而受到化学工作者关注 [2 ,3] .然而对这些杯芳烃金属配合物的电化学行为的研究却较少 [4 ] ,特别是针对稀土金属、过渡金属与杯芳烃及其衍生物所形成配合物的电化学行为的研究 ,国内至今尚未见报道 .本文对铕 ( ) - 5,1 1 ,1 7,2 3-四叔丁基 - 2 5,2 7-二苄氧基 - 2 6,2 8-二羟基杯 [4]芳烃 (Eu- Calix- 2 Ar)这一新的杯芳烃金属配合物膜修饰电极的制备、伏安性能及其氧化还原机理…  相似文献   

6.
以1,3-二(4-吡啶基)丙烷(L)为配体,合成了一种新的Cd(Ⅱ)配合物{[CdL2(H2O)2].2(C7H6N5)}n(C7H6N5=5-(3-氨基苯基)四唑离子)。X射线单晶衍射结构分析表明该配合物为一维链状结构,Cd(Ⅱ)分别与4个1,3-二(4-吡啶基)丙烷配体的4个氮原子,2个配位水分子的氧原子形成了六配位的扭曲八面体几何构型,1,3-二(4-吡啶基)丙烷配体桥梁相邻的Cd(Ⅱ)离子形成了一维的无限延伸的链状结构,分子间通过O-H…N、N-H…N氢键作用构筑成三维超分子网络结构。  相似文献   

7.
吡啶-2,3,5,6-四甲酸双核锰(Ⅱ)配合物的合成及结构   总被引:1,自引:1,他引:0  
合成了一个双核锰配合物[Mn2(H2pdtc)2(H2O)6].2H2O(H4pdtc=吡啶-2,3,5,6-四甲酸),并利用红外光谱、元素分析、X-射线单晶衍射分析及磁性分析等手段对其进行了表征及研究。该配合物为三斜晶系,P1空间群,晶胞参数a=0.84166(13)nm,b=0.933 75(14)nm,c=1.024 29(16)nm,α=111.248(2)°,β=90.733(2)°,γ=115.161(2)°,V=0.665 66(18)nm3,Z=1。结构分析表明,该配合物有一个双核单元,且该双核单元通过分子间氢键及π…π堆积作用形成三维超分子网状结构。  相似文献   

8.
合成了两种金属配合物{[Cu2(pztc)(4, 4'-bpy)(H2O)4]·6H2O}n (1), {(H2bpe)[Cd(pztc)(H2O)2]·2.5H2O}n (2)(H4pztc=吡嗪-2, 3, 5, 6-四甲酸, bpy=4, 4'-联吡啶, bpe=1, 2-二(4-吡啶基)乙烯), 测定了其晶体结构, 并对其进行了红外光谱、荧光光谱和热重分析等表征。两种配合物均为二维层状结构, 但其中吡嗪四酸的配位方式不同。配合物2具有蓝色的荧光, 最大荧光发射峰在475 nm。测试了配合物1的电子顺磁共振谱, 结果显示Cu2+的特征谱带。  相似文献   

9.
配合物Fe(pda)2(H2O)4和[FeCo(pda)4(H2O)4]n的合成与晶体结构   总被引:1,自引:0,他引:1  
采用水热法合成了2个3-(3-吡啶基)丙烯酸的配合物:Fe(pda)2(H2O)4(1)和[FeCo(pda)4(H2O)4]n(2)(pda=3-(3-吡啶基)丙烯酸),用红外光谱、元素分析、热重-差热以及X-射线衍射单晶结构分析进行了表征.2个配合物都属于单斜晶系,配合物1的空间群为P21/n,配合物2的为P21/c.配合物1是一个pda配体中仅吡啶基氮原子参与配位、而羧基上的氧原子未参与配位的单核结构,通过大量的氢键作用形成三维超分子体系.2是pda配体桥联Fe和Co的异核二维层状配位聚合物;配体吡啶基上的氮原子和羧基上的氧原子都参与了配位,其中羧基采用单齿配位模式.  相似文献   

10.
任艳秋  韩伟  程美令  杨勇  刘琦 《无机化学学报》2014,30(11):2635-2644
以5-甲基-3-吡唑甲酸为配体,合成了1个单核锰(Ⅱ)配合物[Mn(HMPCA)2(phen)]·2H2O(1)和1个钴(Ⅱ)的一维配位聚合物{[Co(HMPCA)2(pyz)]·5H2O}n(2)(H2MPCA=5-甲基-3-吡唑甲酸;phen=1,10-菲咯啉;pyz=吡嗪),并用元素分析、红外光谱、X-射线单晶衍射结构分析、热重分析等对其进行了表征。配合物1属于正交晶系,空间群为Pbca,配合物2属于单斜晶系,空间群为P21/c。配合物1和2中的金属离子都位于1个畸变的八面体构型中。配合物1中的独立结构单元间通过分子间氢键作用构成1个三维结构。而在2中,每个吡嗪分子桥联2个相邻的钴(Ⅱ)离子,形成1个一维链;这些一维链和水分子通过分子间氢键进一步形成一个三维的结构。变温磁化率数据(300~1.8K)表明配合物2中的钴(Ⅱ)离子间存在弱的反铁磁性作用。  相似文献   

11.
Extension of time-resolved infrared (TRIR) measurements into the near-infrared region has allowed the first direct measurement of a mixed-valence band in the metal-to-ligand charge transfer (MLCT) excited state of a symmetrical ligand-bridged complex. Visible laser flash excitation of [(tpy)Ru(tppz)Ru(tpy)]4+ (tppz is 2,3,5,6-tetrakis(2-pyridyl)pyrazine; tpy is 2,2':6',6' '-terpyridine) produces the mixed-valence, MLCT excited state [(tpy)RuIII(tppz*-)RuII(tpy)]4+* with the excited electron localized on the bridging tppz ligand. A mixed-valence band appears at numax = 6300 cm-1 with a bandwidth-at-half- maximum, Deltanu1/2 = 1070 cm-1. In the analogous ground-state complex, [(tpy)Ru(tppz)Ru(tpy)]5+, a mixed-valence band appears at numax = 6550 cm-1 with Deltanu1/2 = 970 cm-1 which allows a comparison to be made of electronic coupling across tppz0 and tppz*- as bridging ligands.  相似文献   

12.
The dinuclear complexes [(tpy)Ru(tppz)Ru(bpy)(L)](n+) (where L is Cl(-) or H(2)O, tpy and bpy are the terminal ligands 2,2':6',2'-terpyridine and 2,2'-bipyridine, and tppz is the bridging backbone 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were prepared and structurally and electronically characterized. The mononuclear complexes [(tpy)Ru(tppz)](2+) and [(tppz)Ru(bpy)(L)](m+) were also prepared and studied for comparison. The proton-coupled, multi-electron photooxidation reactivity of the aquo dinuclear species was shown through the photocatalytic dehydrogenation of a series of primary and secondary alcohols. Under simulated solar irradiation and in the presence of a sacrificial electron acceptor, the photoactivated chromophore-catalyst complex (in aqueous solutions at room temperature and ambient pressure conditions) can perform the visible-light-driven conversion of aliphatic and benzylic alcohols into the corresponding carbonyl products (i.e., aldehydes or ketones) with 100% product selectivity and several tens of turnover cycles, as probed by NMR spectroscopy and gas chromatography. Moreover, for aliphatic substrates, the activity of the photocatalyst was found to be highly selective toward secondary alcohols, with no significant product formed from primary alcohols. Comparison of the activity of this tppz-bridged complex with that of the analogue containing a back-to-back terpyridine bridge (tpy-tpy, i.e., 6',6'-bis(2-pyridyl)-2,2':4',4':2',2'-quaterpyridine) demonstrated that the latter is a superior photocatalyst toward the oxidation of alcohols. The much stronger electronic coupling with significant delocalization across the strongly electron-accepting tppz bridge facilitates charge trapping between the chromophore and catalyst centers and therefore is presumably responsible for the decreased catalytic performance.  相似文献   

13.
The mixed-metal supramolecular complexes [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 (tpy = 2,2':6',2'-terpyridine and tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were synthesized and characterized. These complexes contain ruthenium bridged by tppz to platinum centers to form stereochemically defined linear assemblies. X-ray crystallographic determinations of the two complexes confirm the identity of the metal complexes and reveal intermolecular interactions of the Pt sites in the solid state for [(tpy)Ru(tppz)PtCl](PF6)3 with a Pt...Pt distance of 3.3218(5) A. The (1)H NMR spectra show the expected splitting patterns characteristic of stereochemically defined mixed-metal systems and are assigned with the use of (1)H-(1)H COSY and NOESY. Electronic absorption spectroscopy displays intense ligand-based pi --> pi* transitions in the UV and MLCT transitions in the visible. Electrochemically [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 display reversible Ru (II/III) couples at 1.63 and 1.83 V versus Ag/AgCl, respectively. The complexes display very low potential tppz (0/-) and tppz(-/2-) couples, relative to their monometallic synthons, [(tpy)Ru(tppz)](PF6)2 and [Ru(tppz)2](PF6)2, consistent with the bridging coordination of the tppz ligand. The Ru(dpi) --> tppz(pi*) MLCT transitions are also red-shifted relative to the monometallic synthons occurring in the visible centered at 530 and 538 nm in CH3CN for [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4, respectively. The complex [(tpy)Ru(tppz)PtCl](PF6)3 displays a barely detectable emission from the Ru(dpi) --> tppz(pi*) (3)MLCT in CH 3CN solution at RT. In contrast, [ClPt(tppz)Ru(tppz)PtCl](PF6)4 displays an intense emission from the Ru(dpi) --> tppz(pi*) (3)MLCT state at RT with lambda max(em) = 754 nm and tau = 80 ns.  相似文献   

14.
This article presents a combined experimental and computational study of [Cu(tppz)(SCN)2], where ttpz stands for 2,3,5,6-tetra-(2-pyridyl)pyrazine. The compound has been studied by IR, UV–Vis spectroscopy, and single crystal X-ray analysis. The geometry around copper atom may be described as a distorted square pyramid. The equatorial plane is defined by three nitrogen atoms of tppz and one nitrogen atom of thiocyanate group. The apical site is occupied by nitrogen atom of the second SCN? ion. The electronic spectrum of [Cu(tppz)(SCN)2] was analyzed, and bands were assigned through the DFT/TDDFT procedures.  相似文献   

15.
The mononuclear Ru(III) complex, [Ru(bpy)(tppz)Cl][PF6]2.acetylacetone, where tppz is 2,3,5,6-tetrakis(2-pyridyl)pyrazine and bpy is 2,2′-bipyridine, has been prepared and characterized by physicochemical and spectroscopic methods, cyclic voltammetry, and single crystal X-ray structure analysis. The coordination around the Ru(III) center is distorted octahedral, with bite angles of 80.70–161.83° for the chelating bpy and tppz ligands. The two pyridyl rings of the bpy ligand are nearly coplanar. UV–vis spectroelectrochemical studies of this complex in acetonitrile showed a reversible redox behavior evaluated by the maintenance of isosbestic points in the UV–vis spectrum for both forward reduction and reverse oxidation processes. Magnetic susceptibility data derived from paramagnetic NMR data revealed an effective magnetic moment of 1.79 BM at room temperature.  相似文献   

16.
2-Aminomethylpyridine (1) readily reacted with Co(II) ion to give a chelate complex which reacted with oxygen to form, presumably, a μ-peroxodicobalt(III) complex or a Co(III)-(1) complex, and finally it was transformed to 2,3,5,6-tetra(2-pyridyl) pyrazine.  相似文献   

17.
Reaction of [(η 5-C5Me5)M(μ-Cl)Cl]2 {M?=?Rh (1), Ir (2)} and [(η 5-C5Me5)MCl2(DBT)] (DBT?=?dibenzothiophene) {M?=?Rh (3), Ir (4)} with polypyridyl ligands 2,3-bis(2-pyridyl)pyrazine (bpp), 2,3-bis(2-pyridyl)quinoxaline (bpq), 1,3,5-tris(2-pyridyl)-2,4,6-triazine (tptz), 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz) and 4′-pyridyl-2,2′:6′,2′′-terpyridine (py-terpy) results in the formation of mononuclear cationic complexes, [(η 5-C5Me5)MCl(poly-py)]+ (poly-py?=?polypyridyl ligand). The complexes were isolated as hexafluorophosphate salts and characterized by IR and NMR spectroscopy.  相似文献   

18.
Tppz [2,3,5,6-tetrakis(2-pyridyl)pyrazine]-bridged complexes [((L)ClRu)(2)(mu-tppz)]n+ with structurally similar but electronically different ancillary ligands, 2-(2-pyridyl)azoles (L), were synthesized as diruthenium(II) species. Cyclic voltammetry, EPR of paramagnetic states, and UV-vis-NIR spectroelectrochemistry show that the first two reduction processes occur at the tppz bridge and that oxidation involves mainly the metal centers. The mixed valent intermediates from one-electron oxidation exhibit moderate comproportionation constants 10(4) < K(c) < 10(5) but appear to be valence-averaged according to the Hush criterion. Redox potentials, EPR, and UV-vis-NIR results show the effect of increasing donor strength of the ancillary ligands along the sequence L(1) < L(2) < L(4) < L(3), L(1) = 2-(2-pyridyl)benzoxazole, L(2) = 2-(2-pyridyl)benzthiazole, L(3) = 2-(2-pyridyl)benzimidazolate, L(4) = 1-methyl-2-(2-pyridyl)-1H-benzimidazole. Whereas the mixed valent complexes with L(1) and L(2) remain EPR silent at 4 K, the analogues with L(4) and L(3) exhibit typical ruthenium(III) EPR signals, albeit with some noticeable ligand contribution in the case of the L(3)-containing complex. Intervalence charge transfer (IVCT) bands were found in the visible spectrum for the complex with L(3) but in the near-infrared range (at ca. 1500 nm) for the other systems.  相似文献   

19.
Three new copper(ii) complexes of formula [Cu(tppz)(NCO)(2)].0.4H(2)O (1), [Cu(2)(tppz)Br(4)](2) and [Cu(3)(tppz)(C(5)O(5))(3)(H(2)O)(3)].7H(2)O (3)[tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine; C(5)O(5)(2-) = croconate, dianion of 4,5-dihydroxycyclopent-4-ene-1,2,3-trione] have been synthesised and structurally characterized by X-ray diffraction methods. The structure of complex is made up of neutral [Cu(tppz)(NCO)(2)] mononuclear units and uncoordinated water molecules. The mononuclear units are grouped by pairs to give a rather short copper-copper distance of 3.9244(4) angstroms. The structure of complex 1 consists of neutral tppz-bridged [Cu(2)(tppz)Br(4)] dinuclear units, the copper-copper separation across tppz being 6.6198(1) angstroms. The dinuclear units are further connected through weak, double out-of-plane Cu-Br...Cu bridges [Br(1)...Cu(1a) 4.0028(17) angstroms] creating tetranuclear entities, the copper-copper separation through this interaction being 4.3299(21) angstroms. The structure of complex 3 is built of neutral [Cu(3)(tppz)(C(5)O(5))(3)(H(2)O)(3)] trinuclear units and uncoordinated water molecules. Tppz and one of the croconate groups act as bridging ligands, the former exhibiting the bis-terdentate coordination mode and the latter adopting an unusual asymmetrical bis-bidentate bridging mode through three adjacent oxygen atoms. The other two croconate groups exhibit the bidentate coordination mode. The intramolecular copper-copper separations are 6.5417(9)(across tppz) and 4.3234(9) angstroms (through bis-bidentate croconato). The magnetic properties of 2 and 3 have been investigated in the temperature range 1.9-300 K. The magnetic behaviour of complex 2 is that of an antiferromagnetically coupled copper(II) dimer (J = -40.9 cm(-1), the Hamiltonian being H = -JS(A).S(B)). In the case of compound , the chi(M) T vs. T plot is typical of an overall antiferromagnetic coupling with a low-lying spin doublet being fully populated at T < 10 K. The values of the intramolecular antiferromagnetic interactions in 3 are -19.9 (across tppz) and -32.9 cm(-1)(through bridging croconato). Density functional type calculations were performed on model dinuclear fragments of 3 in order to analyze the efficiency of the exchange pathways involved and also to substantiate the coupling parameters.  相似文献   

20.
Using the [RuCl(μ-tppz)ClRu](2+) [tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine] platform for bridging two o-quinone/catecholate two-step redox systems (unsubstituted, Q(n), or 3,5- di-tert-butyl-substituted, DTBQ(n)), we have obtained the stable complexes [(Q(?-))Ru(II)Cl(μ-tppz)ClRu(II)(Q(?-))] (1) and the structurally characterized [(DTBQ(?-))Ru(II)Cl(μ-tppz)ClRu(II)(DTBQ(?-))] (2). The compounds exhibit mostly quinone-ligand-based redox activity within a narrow potential range, high-intensity near-IR absorptions (λ(max) ≈ 920 nm; ε > 50,000 M(-1) cm(-1)), and variable intra- and intermolecular spin-spin interactions. Density functional theory calculations, electron paramagnetic resonance (EPR), and spectroelectrochemical results (UV-vis-near-IR region) for three one-electron-reduction and two one-electron-oxidation processes were used to probe the electronic structures of the systems in the various accessible valence states. EPR spectroscopy of the singly charged doublet species showed semiquinone-type response for 1(+), 2(+), and 2(-), while 1 exhibits more metal based spin, a consequence of the easier reduction of Q as compared to DTBQ. Comparison with the analogous redox series involving a more basic N-phenyliminoquinone ligand reveals significant differences related to the shifted redox potentials, different space requirements, and different interactions between the metals and the quinone-type ligands. As a result, the tppz bridge is reduced here only after full reduction of the terminal quinone ligands to their catecholate states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号