首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, task‐specific ionic liquid solid‐phase extraction is proposed for the first time. In this approach, a thiourea‐functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid‐phase extraction column are used for the selective extraction and preconcentration of ultra‐trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5–40.0 ng/mL with the detection limit of 0.13 ng/mL (3sb/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents.  相似文献   

2.
A novel bis(indolyl)methane‐modified silica reinforced with multiwalled carbon nanotubes sorbent for solid‐phase extraction was designed and synthesized by chemical immobilization of nitro‐substituted 3,3′‐bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high‐performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single‐step solid‐phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R2) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5–5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro‐substituted 3,3′‐bis(indolyl)methane‐modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro‐substituted 3,3′‐bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface‐to‐volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π–π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as‐established solid‐phase extraction with high‐performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes.  相似文献   

3.
An analytical method for determining seleno‐methionine, methyl‐seleno‐cysteine, and seleno‐cystine in wheat bran was developed and validated. Four different extraction procedures were evaluated to simultaneously extract endogenous free and conjugated seleno‐amino acids in wheat bran in order to select the best extraction protocol in terms of seleno amino acid quantitation. The extracted samples were subjected to a clean‐up by a reversed phase/strong cation exchange solid‐phase extraction and analyzed by chiral hydrophilic interaction liquid chromatography‐tandem mass spectrometry. The optimized extraction protocol was employed to validate the methodology. Process efficiency ranged from 58 to 112% and trueness from 73 to 98%. Limit of detection and limit of quantification were lower than 1 ng/g. Four wheat bran samples were analyzed for both total Se and single seleno‐amino acids determination. The results showed that Se‐ seleno‐methyl‐l selenocysteine was the major seleno‐amino acid in wheat bran while seleno‐methionine and seleno‐cysteine were both minor species.  相似文献   

4.
Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid‐phase extraction with high‐speed counter‐current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid‐phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid‐phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two‐phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid‐phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p‐coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution–extrusion counter‐current chromatography and back‐extrusion counter‐current chromatography were compared.  相似文献   

5.
The easy shrinkage and swelling of polymer monolithic column when exposed to mobile phase with different polarity is a problem that cannot be ignored. To overcome this drawback, a convenient aqueous two‐phase polymerization approach was used to prepare poly (polyethylene glycol diacrylate, PEGDA) monolithic porous layer open tubular (mono‐PLOT) columns (150 μm). The poly(PEGDA) mono‐PLOT column with homogeneous polymer porous layer was synthesized successfully. A maximum plate number of 41,500 plates per meter for allyl thiourea was obtained under a velocity of 1.8 mm/s. Several kinds of polar molecule were separated on the proposed mono‐PLOT column and a typical hydrophilic interaction retention mechanism was observed. High speed separation of benzoic acids was also carried out, baseline separation of five benzoic acids was successfully achieved within 5 min with a 70 cm mono‐PLOT column at 50°C. Furthermore, the resulting PLOT column was also successfully applied to separate standard analytes of three DNA oxidative damage products and RNA‐modified nucleosides and four chlorophenols. At last, the column could separate alcohols, alkanes, and aromatic isomers via GC. It had more than 20,000 plates per meter for butanol – higher than commercial coatings open tubular columns.  相似文献   

6.
A simple method for the determination of phenolic acids in Chinese Wolfberry drink based on polyethyleneimine modified porous aromatic framework and graphene oxide composite sorbent for pipette‐tip solid‐phase extraction was developed. Porous aromatic framework and raphene oxide composite materials were grafted by silane coupling agent (3‐Chloropropyl)‐trimethoxysilane. The modified materials were characterized by five kinds of characterization. Experimental results showed that the prepared p‐phenylenediamine, cyanuric chloride, and graphene oxide composite material had a loose structure combined with the framework which improved hydrophobicity, and polyethyleneimine to increase the selectivity with the targets. The parameters of the pipette‐tip solid‐phase extraction procedure including the amount of sorbents, volumes and types of washing solvents and elution solvents were optimized to achieve optimal extraction efficiency. Good linearity of best material was achieved in the range of 0.1–400 µg/mL with correlation coefficient of chlorogenic acid (0.9994), caffeic acid (0.9997), and ferulic acid (0.9998). Recoveries between 93.5 and 102.3% were obtained at three spiked levels with relative standard deviation ≤3.1%. The proposed method was successfully applied for the determination of phenolic acids in Chinese Wolfberry drink sample.  相似文献   

7.
A novel l‐ phenylalanine molecularly imprinted solid‐phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion‐pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid‐phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l‐ phenylalanine. Under the optimized conditions of the procedure, an analytical method for l‐ phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse‐phase silica gel, the obtained molecularly imprinted polymer as an solid‐phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L?1) for the isolation of l‐ phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion‐pair dummy template imprinting is effective for preparing selective solid‐phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples.  相似文献   

8.
将C18柱与手性冠醚柱串联,建立了一种反相高效液相色谱法用于3种芳香族氨基酸对映体同时拆分的方法.考察了反相色谱流动相的组成、pH值、柱温、流速对对映体拆分的影响.实验结果表明,当流动相为HClO4-乙睛溶液(86:14,V/V,pH 2.0)、柱温20℃、流速0.4 mL/min时,3种氨基酸对映体可获得基线分离.进一步对比了C18柱、冠醚手性柱和串联顺序不同的4种分离模式,结果表明,C18柱不能拆分氨基酸对映体,仅能分离不同种类氨基酸;冠醚手性柱可分离氨基酸映体,但不同种类氨基酸色谱峰出现重叠;串联模式能实现3种氨基酸对映体的基线分离,实现双柱优势互补,而串联顺序对分离影响不大,仅影响色谱峰的峰形.  相似文献   

9.
A highly sensitive method was developed for the analysis of short‐chain perfluorinated alkyl acids (PFAAs) in serum samples using solid‐phase extraction (SPE) coupled with ion chromatography–electrospray ionization–mass spectrometry. The synthesized amino‐functionalized graphene oxide nanocomposites were used as an SPE sorbent for the enrichment of trace analytes and purification of samples. They exhibited high selectivity to polar compounds. The suppressor was employed to remove counterions and reduce background signals of mobile phase. These two crucial steps could effectively eliminate matrix effects and enhance analytical sensitivity. The lowest limits of quantification were 2.0 μg L−1 for perfluorobutanoic acid and perfluorovaleric acid, 1.0 μg L−1 for perfluorocaproic acid and 0.50 μg L−1 for perfluorobutane sulfonic acid, respectively. The procedure was successfully applied for determination of trace PFAAs in 25 serum samples. Mean recoveries ranged from 86.3 to 101.4% with relative standard deviations of 1.6–6.8%. The method allowed an excellent separation and quantification of short‐chain PFAAs that were difficult to analyze by conventional chromatography.  相似文献   

10.
A poly(butyl methacrylate‐co‐ethylene dimethacrylate) monolithic column was fabricated and used as a novel sorbent for online solid‐phase extraction coupled to liquid chromatography with tandem mass spectrometry for the simultaneous determination of Sudan I–IV in chili pepper powder. The prepared columns were characterized by scanning electron microscopy, nitrogen adsorption‐desorption, and pressure drop measurements. Online solid‐phase extraction was performed on the synthesized monolithic column using 10 mM ammonium acetate solution as the loading solution with the aid of an online cleanup chromatography system. The desorption of Sudan I–IV was achieved with acetonitrile as the eluting solution at the flow rate of 0.5 mL/min. The extracted analytes were subsequently eluted into a C18 analytical column for chromatographic separation using a mixture of 10% acetonitrile/90% formic acid (0.5%) solution as the mobile phase. Under the optimized conditions, the developed method had linear range of 1.0–50 μg/kg, a detection limit of 0.3 μg/kg, and a quantification limit of 1.0 μg/kg for each analyte. The intraday and interday recoveries of Sudan I–IV in chili pepper powder samples ranged from 94.8 to 100.9% and 94.9 to 99.4%, respectively. The intraday and interday precision were between 3.37–7.01% and 5.01–7.68%, respectively.  相似文献   

11.
A zirconium(IV)‐based metal–organic framework material (MOF‐808) has been synthesized in a simple way and used for the extraction of phenoxyacetic acids in complex samples. The material has good thermal and chemical stability, large specific surface area (905.36 m²/g), and high pore size (22.18 Å). Besides, it contains a large amount of Zr‐O groups, easy‐to‐form Zr‐O‐H bond with carboxyl groups of phenoxyacetic acids, and possesses biphenyl skeleton structure, easy to interact with compounds through π‐π and hydrophobic interactions. These characteristics make the material very suitable for the extraction of certain compounds with a high extraction efficiency and excellent selectivity. The extraction conditions were optimized, and then an analytical method was successfully established and applied for analysis of actual samples. The solid‐phase extraction method based on prepared material had a wide linear range of 0.2–250 μg/L and a low detection limit of 0.1–0.5 μg/L for four phenoxyacetic acid compounds including 2,4‐dichlorophenoxyacetic acid, 2‐(2,4‐dichlorophenoxy) propionic acid, 4‐chlorophenoxyacetic acid, and dicamba. The relative standard deviations of intra‐ and interday precision were 1.8–3.8 and 4.3–6.9%, and the recoveries after spiking were between 77.1 and 109.3%. The results showed that the material is a desired substituent for the extraction of compounds with benzene ring structure containing carboxyl groups.  相似文献   

12.
We developed a simple, rapid and reliable method for determination of 20 common amino acids based on derivatization with 9‐fluorenylmethyl chloroformate (FMOC‐Cl) and RP‐LC/UV, this method was first introduced into quantitative analysis of amino acids. The amino groups of amino acids were trapped with FMOC‐Cl to form amino acid‐FMOC‐Cl adducts which can be suitable for LC‐UV. Chromatographic separation was performed on a C18 column with a mobile phase gradient consisting of acetonitrile and sodium acetate solution. This method was shown to be sensitive for 20 common amino acids. In the intra‐day precisions assay, the range of RSDs was 3.21‐7.67% with accuracies of 92.34‐102.51%; for the inter‐day precisions assay, the range of RSDs was 5.82‐9.19% with accuracies of 90.25‐100.63%. The results also indicated that solutions of amino acids‐FMOC‐Cl can be kept at room temperature for at least 24 h without showing significant losses in the quantified values. The validated method was successfully applied to the determination of major four kinds of amino acids in R. isatidis samples (Arg, Pro, Met and Val). The total content of amino acids in different origin R. isatidis was 13.32‐19.16 mg/g. The differences between R. isatidis samples were large using HCA.  相似文献   

13.
In this study, poly(styrene‐co‐N‐methacryloyl‐l ‐phenylalanine methyl ester)‐functionalized magnetic nanoparticles were constructed and used as magnetic solid‐phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)‐based sorbents, N‐methacryloyl‐l ‐phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)‐based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)‐based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid‐phase extraction sorbents have a great potential for the analysis of preservatives in food samples.  相似文献   

14.
In the present study, highly efficient and simple dispersive solid‐phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid‐phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH?4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid‐phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05–100 μg/L with detection limits in the range of 0.006–0.05 μg/L. The relative standard deviations were 0.33–3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids.  相似文献   

15.
A highly sensitive, rapid and specific ultrahigh‐performance liquid chromatography, coupled to negative electrospray ionization high‐resolution tandem mass spectrometry, method was developed and validated in order to investigate the absorption of dietary oleuropein (OE) in human subjects. Serum samples were collected at predefined time points, after oral administration of an olive leaf extract enriched in OE (204.4 mg OE per capsule) to two subjects. Subsequently, samples were analyzed by the developed method after a simple solid‐phase extraction step. Chromatographic separation was operated with aqueous formic acid, 0.1% (v/v), and acetonitrile following a gradient program at a flow rate of 0.45 mL/min in an RP‐C18 (50 × 2.1 mm, 1.9 μm) column with a total run time of 2.7 min. The method was validated and successfully applied to the determination of OE in human serum, with the pharmacokinetic analysis of the data revealing a biphasic response.  相似文献   

16.
Magnetic graphene oxide was modified by four imidazole‐based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid‐phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field‐emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single‐factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid–liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid‐modified magnetic graphene oxide materials, and amount of 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic‐liquid‐modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties.  相似文献   

17.
Peptides containing various α,α‐disubstituted α‐amino acids, such as α‐aminoisobutyric acid (Aib), 1‐aminocyclopentane‐1‐carboxylic acid, α‐methylphenylalanine, and 3‐amino‐3,4,5,6‐tetrahydro‐2H‐pyran‐3‐carboxylic acid have been synthesized from the N‐ to the C‐terminus by the ‘azirine/oxazolone method’ under solid‐phase conditions. In this convenient method for the synthesis of sterically demanding peptides on solid‐phase, 2H‐azirin‐3‐amines are used to introduce the α,α‐disubstituted α‐amino acids without the need for additional reagents. Furthermore, the synthesis of poly(Aib) sequences has been explored.  相似文献   

18.
This paper describes the use of graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane as a solid‐phase extraction sorbent for the determination of organic acids. The resultant graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane was characterized by FTIR spectroscopy and adsorption experiments. Solid‐phase extraction parameters such as sorbent type, sample solution pH, sample loading rate, eluent salt concentration, eluent methanol concentration, elution rate, sample loading, and elution volume were optimized. The method showed good precision, accuracy, sensitivity, and linear response for organic acids analysis over a concentration range of 1–100 μg/L for benzoic acid, p‐methoxybenzoic acid, and salicylic acid and 5–100 μg/L for the remaining organic acids (cinnamic acid, p‐chlorobenzoic acid, and p‐bromobenzoic acid) with coefficients of determination (r2) of higher than 0.9957. Limits of detection from 0.50 to 1.0 μg/L for six organic acids were achieved. The developed method was successfully applied to determine organic acids in real samples.  相似文献   

19.
An ultra high performance liquid chromatography with triple quadrupole mass spectrometry method for the determination of free and bound phenolic acids in tobacco plant and soil was developed. A simple solid‐phase extraction, which used Polar Enhanced Polymer column as stationary phase and methanol as mobile phase, was used for the clean‐up of bound phenolic acids, and a liquid‐phase extraction using chloroform as solvent was used to purify free phenolic acids. With our method, 18 phenolic acids in rhizosphere soil of continuous cropping flue‐cured cultivar k326 were separated and determined within 6 min with recoveries of 82–107% and relative standard deviations (n = 5) of 1.1–4.8%. Results showed that free phenolic acids accounted for 0–9, 92–100, and 69–100% of total phenolic acids in rhizosphere soil, cultivar k326 roots and leaves, respectively. Results also revealed that p‐hydroxybenzoic acid, p‐coumaric acid, vanillic acid, ferulic acid, and syringic acid were the predominant phenolic acids in rhizosphere soil of cultivar k326, and continuous cropping of cultivar k326 in the same farmland could lead to the accumulation of these phenolic acids in soil except syringic acid. The determination of phenolic acids provided detailed information for evaluating their source and characteristics in continuous cropping tobacco plant and soil.  相似文献   

20.
A mixture of five amino acids including arginine, histidine, phenylalanine, serine and glutamic acid was successfully separated in microchip capillary electrophoresis and detected with laser-induced fluorescence (LIF) detector. These amino acids were labeled with 5-(4, 6-dichloro-s-triazin-2-ylamino) fluorescein (DTAF). The analyses were performed on two kinds of modified poly(dimethylsiloxane) (PDMS) microchips. One kind of chip was simply treated with oxygen plasma (OP-chip), and the other was further modified by coating double layers of non-ionic polymer poly(vinyl alcohol) (PVA) after plasma oxidization (PVA-chip). The derivatization condition of amino acids by DTAF was optimized. The properties of the two modified PDMS microchips were studied and separation conditions, such as the buffer pH, buffer concentration and separation voltage, were also optimized. The column efficiencies of the two microchips were in the range of 193,000–1,370,000 plates/m. The DTAF-labeled amino acids were sufficiently separated within 50 s and 90 s in 2.5 cm channels on OP-chip and PVA-chip, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号