首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The relationship between the textural properties (pore size, pore volume and surface area) of reversed-phase silica gel packings for HPLC and the dynamic loading capacity of large biomolecules was studied by using silica gels manufactured by similar processes. Several silica gels whose unbonded pore diameters range from 100 to 250 A and whose pore volumes range from 1.0 to 1.4 ml/g have been prepared and characterized. The bonded phase is monomeric C18. The textural properties of the bonded silica gels are also presented and related to the properties of the unbonded silica gels.

Chromatographic evaluation with typical proteins in an underload-to-overload condition was performed in order to relate the influence of textural properties of silica gel to loading capacity and resolution. The packings with larger pore size and pore volume produced better column performance and higher loading of proteins.  相似文献   

2.
This study deals with the use of ethanol as washing solvent in the preparation of the silica gels from sodium silicate in order to enhance the textural properties, especially surface area. We here examined the effect of ethanol-washing on surface area, micro- and mesopore volume, and average pore size. The silica xerogels prepared from sodium silicate solution exhibited an extremely high surface area of 1139 m2/g by washing their hydrogels with ethanol. Compared to water-washed xerogels, ethanol-washed xerogels showed higher surface areas, total pore volumes, and larger average pore sizes. Unlike the surface area of water-washed xerogel, that of the ethanol-washed xerogel was not affected by the silica concentration of initial solution. This study indicates that the textural properties of sodium silicate-derived xerogels are further enhanced by using ethanol as washing solvent.  相似文献   

3.
Supercritical Drying Applied to Natural “Gels”: Allophanic Soils   总被引:1,自引:0,他引:1  
Allophanic soils behave as gels during a classical drying with an important irreversible shrinkage which can modify the soil physical properties. These soils are interesting in terms of mitigation of the greenhouse effect (C sequestration) and the knowledge of the true soils features are of importance. Like for silica gels, we use the CO2 supercritical drying procedure (SCD) to control the drying step. The objective is to preserve the structural and textural properties of the soils, which can be affected by the classical drying. We show also that despite the necessary solvent exchange and high pressure of the supercritical drying, the chemical composition and the allophanic features are not strongly affected.The textural properties such as specific surface area are higher for the supercritical dried samples compared to the classical dried samples, indicating the preserving effect of the SCD and showing the interest of the application of this drying method to this natural and complex “gels”. With these data, we show possible effects of the specific surface area on the C and N content of the allophanic soils.  相似文献   

4.
Volcanic soil comprises weathering products such as allophane, originating from a leaching process of volcanic ashes and glasses. These soils are interesting in terms of mitigation of the greenhouse effect (C sequestration), because they are known for accumulating more C than non-volcanic soils. Allophanes are natural amorphous silicates and have physical features very close to those of synthetic gels. Knowledge of the allophanic soil structure is required to understand the sequestration mechanism. In this paper, nitrogen adsorption-desorption experiments, measured on allophanic soil samples, show that the hydraulic diameter (Dh) is shifted towards smaller size while the pore volume (Vp) and specific surface area (S) increase, when the allophane content of the soil increases. We introduce a numerical model to simulate the structure of this “natural gel”. The algorithm is based on Diffusion-Limited Cluster-Cluster Aggregation in which larger particles hinder the DLCA. As a function of the relative content of allophane (gel) and larger particles, the textural properties (Vp, S, Dh) of the different simulated structure are calculated using a simple triangulation method. Numerical results are in good agreement with experimental data and from the simulated data, we can derive the permeability evolution as a function of the allophane content. We show that at the scale of the allophanic aggregates the calculated permeability is low and could be an important parameter to explain the larger C content of allophanic soils. Because of the low allophanic aggregate permeability, the fluid exchanges and chemical reactions are slow. This gel-allophane analogy and DLCA model allow proposing a different approach to describe the properties of these peculiar soils.  相似文献   

5.
The paper concerns studies of the porous structure of spherical microparticles resulting from the polycondensation of urea and formaldehyde in the presence of silica sol (UFR–SG) and silica gel microspheres prepared from the latter. It is disclosed that, when the content of colloidal silica increases, the specific surface area of UFR–SG system rises and the porous structure (pore size distribution) of the obtained silica gel microspheres becomes more uniform.  相似文献   

6.
Mesoporous titania, especially anatase, is attractive due to its potential applications. A novel method to control pore structure of titania, surfactant- or polymer modification, is proposed. The wet gels and gel films, prepared from Ti(O-nC4H9)4 were dried at 90°C and annealed at 500°C after immersion in surfactant or polymer solutions, and mesoporous anatase was obtained. The pore size, pore volume and specific surface area of the surfactant-modified bulk gels, estimated from N2 absorption-desorption curves, are more than twice larger than those of the gels without modification. The pore size of the surfactant-modified gel films, observed by SEM, are similar to that of the bulk gels. The pore size obviously depended on the size of micelles. The pore size of the gels modified with hydrophilic polymers hardly increased, but the pore volume and the specific surface area increased.  相似文献   

7.
Three kinds of commercial silica gels with pore size of 2–3, 4–7 and 8–10 nm respectively are used for preparing composite adsorbents by soaking them into the aqueous solution of calcium chloride. The test result indicates that both the water uptake and adsorption rate of composite adsorbents prepared from 4–7 and 8–10 nm silica gels improve greatly compared to pure silica gels, but they do not for 2–3 nm silica gels. The silica gel with pore size of 2–3 nm is not suitable for preparing the composite adsorbent by impregnation method due to the pore blockage because of the small pore size. The SCP and COP of the adsorption chiller with sample SA50 are 128.3 Wkg?1 and 0.27 respectively at the hot source temperature of 90 °C, which are largely superior to that of SA0. Hence using the composite adsorbent instead of the pure silica gel can reduce the size of the adsorption chiller.  相似文献   

8.
Silica aerogels were made by sol-gel techniques using industrial silicon derivatives (polyethoxydisiloxanes, E-40), followed by supercritical drying with ethanol. The morphology and microstructure of the silica aerogels were investigated by using specific surface area, SBET, SEM, TEM and the pore size distribution techniques. The thermal conductivity was also measured as a function of air pressure. The results show that the diameter of the silica particles is about 13 nm and the pore size of the silica aerogels is 20–80 nm. The specific surface area of the silica aerogel is about 470 m2/g and the thermal conductivity of the silica aerogel prepared with E-40 is 0.014 w m–1 K–1 at room temperature and 1 atm.  相似文献   

9.
以Ziegler-Natta催化剂和茂金属催化剂为例,介绍了聚烯烃均相催化剂的负载化技术以及载体选择的影响因素,明确了载体的强度、密度、总孔容、孔分布、孔径、粒度和颗粒形状等物理性质是选择载体要考虑的主要因素。综述了聚烯烃催化剂载体硅胶的结构特征和性能特征,并对聚烯烃催化剂载体硅胶的合成机理、影响因素进行了详细介绍。此类载体硅胶比表面积280~320m2/g、堆密度0.28~0.32g/cm3、孔容1.40~1.70cm3/g、平均孔径18~22nm。建议通过开展对不同性能硅胶(如更小粒径、不同元素改性等)的研究开发,以满足不同催化剂对载体硅胶的特殊要求。  相似文献   

10.
Base catalysed silica aerogels have been densified using both an isostatic pressure and a thermal treatment. The density range investigated corresponds to 0.186–0.65. Textural properties such as the specific surface area and the pore size distribution are analysed as a function of the sample's bulk density, using the N2 adsorption-desorption technique. A comparison between specific surface areas obtained previously by small angle X-ray scattering is done. Experiments show that the isostatic pressure leads to materials having a narrow pore size distribution while the specific surface area remains unchanged.  相似文献   

11.
氧化锆基质色谱填料适合于碱性物质,特别是生物大分子的分离,因而具有良好的应用前景。它的制备方法对其物理化学性质有很大的影响,从而影响填料的色谱性能。该文对氧化锆微球的制备方法及其物理化学性质进行了综述。分析表明,目前氧化锆基质色谱填料的制备方法存在着难以克服的缺点,要制备理想的锆基色谱填料需要新的思路。  相似文献   

12.
The effect of secondary (diethanolamine) and tertiary (triethanolamine) alkanolamines as catalysts on the formation of mesoporous Stöber silica nanoparticles by sol–gel method was studied. The particles were characterized by thermogravimetry and differential thermal analysis, Fourier transform infrared spectroscopy, N2 physisorption measurements, and field emission scanning electron microscopy. By using ammonia and different alkanolamines as catalysts, the Brunauer–Emmet–Teller (BET) surface area and pore volume increased in the order of ammonia < diethanolamine < triethanolamine. A maximum BET surface area of 140.1 m2 g?1 and pore volume of 0.66 cm3 g?1 were obtained from triethanolamine catalyzed silica particles. The average particle size of silica prepared by ammonia and different alkanolamines as catalysts decreased in the order of ammonia > diethanolamine > triethanolamine. The role of different alkanolamines on the textural properties and particle size of silica is explained in terms of their relative steric hindrance and basicity.  相似文献   

13.
The pore character of packings for liquid chromatography, especially reversed-phase (RPLC) packings, has been studied by means of the nitrogen adsorption method (BET method). Micro-spherical silica gels with 9, 12, 30, 40 and 50 nm average pore diameter have been used as carriers. These silica gels have been modified with monochlorodimethyloctadecylsilane and several polymers (polyoctadecylmethacrylate-methylmethacrylate co-polymer, polyacrylamide gel, polyvinyl alcohol, poly-2-hydroxyethyl-methacrylate). A larger decrease in the specific surface area values was observed in the case of the polymer coating with the polyoctadecylmethacrylate-methylmethacrylate co-polymer compared with the derivatization by silanes or the modification with polymers without C18-groups. A new approach has been suggested to explain some questions concerning the interpretation of the data obtained during the measurements of the pore characteristics of the derivatized packings. An attempt has been made to reveal peculiarities connecting values of the measured surface of RP-packings with the specific surface area values of the initial silica, as well as with the chromatographically accessible surface.  相似文献   

14.
In this work, the thermodynamic parameters for the adsorption of water vapor on untreated silica gel and silica gel treated with hygroscopic salts and silane coupling agent were determined by Inverse Gas Chromatography (IGC) in the infinite dilution region. The desorption activation energies of the water vapor on virgin and modified silica gels were estimated by using the Temperature Programmed Desorption (TPD) technique. The interactions between the water and the virgin and modified silica gels were discussed. Results showed that the thermodynamic parameters and desorption activation energy of water vapour on the silica gels increase with decreasing pore size and increasing the surface hydrophilic properties. The desorption activation energy of virgin and modified silica gels was found to increase with increasing the thermodynamic parameters. The larger the adsorption parameters and the desorption activation energy were, the interactions between water and virgin and modified silica gels were.  相似文献   

15.
1. INTRODUCTIONSilica gel is an amorphous inorganic polymer composed of siloxane (Si-O-Si) groups in the inner region and silanol (Si-OH) groups distributed on the surface [1]. Silanol groups can be easily functionalized by different chemical procedures. …  相似文献   

16.
Spherical silica particles were synthesized using the sol‐gel method by hydrolyzing tetraethyl orthosilicate (TEOS) with an alkali catalyst, and it was investigated how the experimental conditions (the reaction temperature, the concentration and dropping rate of the hydrolysis catalyst solution) affected the size and morphology of silica particles. Furthermore, the silica particles were doped with sodium fluoride to measure their ion release ability. The mean diameters of the silica particles changed according to the reaction temperature and the dropping rate of the hydrolysis catalyst, namely the higher the reaction temperature or the slower the dropping rate the smaller are the mean diameters. The surface area of the silica particles was significantly different depending on the dropping rate of the hydrolysis catalyst, namely the slower the dropping rate the larger the specific surface area. The specific heat capacity and thermal reduction (TG) of the silica particles were significantly different according to the reaction temperature, namely the higher the reaction temperature the lower the specific heat capacity and the TG. It was found that the fluoride‐retaining ability was proportional to the surface area of silica particles. The fluoride ion release was equilibrated on elapsing 5 min. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
测定了样品的孔结构参数和水蒸气吸附性能。试验表明:用pH3.00酸化的自来水洗涤酸性水凝胶可制得典型的细孔硅胶;用3mol/L以上的硫酸溶液浸泡酸性水凝胶可制得平均孔半径约为300的特粗孔硅胶。  相似文献   

18.
 采用pH摆动法,以硫酸铝为铝源,以氢氧化钠为碱沉淀剂,考察了添加SiO2对沉淀氧化铝物性的影响.通过孔结构分析、粒度测定和电镜观察等证实,加入少量SiO2可使沉淀粒子分散、变小,颗粒相对均匀,从而提高了氧化铝的比表面积和孔集中的程度.当加入2.5%的SiO时,pH仅摆动2次,即可使氧化铝粉体的孔体积高达1.2ml/g,比表面积达380m2/g.这类氧化铝的孔结构适宜,粒子小,易直接成型为孔径集中和耐压强度好的载体,故用于重油高压加氢脱氮反应具有较好的性能.沉淀时酸侧pH值降低,尽管沉淀氧化铝的孔径向较小的方面集中,但此时沉淀粒子呈紧密堆积,颗粒变大,比表面积下降,氧化铝沉淀粒子的结构发生改变.不同结构的氧化铝表现出不同的催化活性.  相似文献   

19.
An improvement in the adsorption characterization of the surface and structural properties of unmodified and modified mesoporous silica gels is presented. This improvement was achieved by selection of proper macroporous silica as the reference solid for adsorption characterization of porous silica gels. Experimental illustration is provided for unmodified and n-octyl-modified silica gels of different bonding density. The surface and structural properties of these silica gels were characterized by utilizing the standard adsorption data for both unmodified and octyl-modified LiChrospher Si-1000 macroporous silica gels. It was shown that the standard nitrogen adsorption data have an appreciable influence on the analysis of the pore size and surface properties of silica gels. This analysis can be improved by selecting the reference solid of the surface properties close to those of the silica gel studied.  相似文献   

20.
High surface area alkyl-substituted silica aerogels and xerogels were successfully prepared by sol-gel processing and supercritical drying. The gels were further heat treated in inert atmosphere to temperatures as high as 1000°C. Surface areas and pore structure of the gels and gels pyrolyzed at high temperatures were determined by multipoint BET surface area measurement. The aerogels and xerogels exhibited surface areas of about 1100 m2/g. No significant effect of pH was found on the surface areas of gels in the two step sol-gel process, but gels of low pH showed smaller pore diameter and higher density. Xerogels showed smaller surface area, pore size, and pore volume compared to aerogels. Upon pyrolyzing in inert atmosphere, the surface areas of all the gels decreased with temperature as a result of collapse of micropores and shrinkage of mesopores. Unlike pure silica gel, which loses almost all surface area and densifies at 1000°C, the advantage of the alkyl-substituted gels is that they maintained a high surface area of 400 m2/g at 1000°C.Also with the Department of Agronomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号