首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Surface plasmon resonance (SPR) imaging affords label-free monitoring of biomolecule interactions in an array format. A surface plasmon conducting metal thin film is required for SPR measurements. Gold thin films are traditionally used in SPR experiments as they are readily functionalized with thiol-containing molecules through formation of a gold-sulfur bond. The lability of this gold-thiol linkage upon exposure to oxidizing conditions and ultraviolet light renders these surfaces incompatible with light-directed synthetic methods for fabricating DNA arrays. It is shown here that applying a thin carbon overlayer to the gold surface yields a chemically robust substrate that permits light-directed synthesis and also supports surface plasmons. DNA arrays fabricated on these carbon-metal substrates are used to analyze two classes of biomolecular interactions: DNA-DNA and DNA-protein. This new strategy allows the combinatorial study of binding interactions directly from native, unmodified biomolecules of interest and offers the possibility of discovering new ligands in complex mixtures such as cell lysates.  相似文献   

2.
The near-field coupling interactions between surface plasmon modes of neighboring metal nanoparticles (NPs) are investigated in thin films of oligothiophene-linked Au NPs. The oligothiophene linker facilitates near-field coupling between adjacent NPs, and disruption of the conjugation in the oligothiophene by chemical oxidation leads to a decrease in surface plasmon resonance (SPR) coupling between neighboring particles. The SPR coupling between NPs was found to be highly dependent on the dielectric constant of the medium that the films are exposed to, where a higher dielectric medium leads to weaker coupling. The dependence of the SPR coupling on the dielectric constant of the medium is explained using electrodynamic theory.  相似文献   

3.
包宇  毛燕  王伟  李正刚  牛利 《电化学》2013,19(1):17-28
表面等离子体共振(Surface Plasmon Resonance,SPR)技术是利用金属薄膜光学耦合产生的物理光学现象建立的一种非常灵敏的光学分析手段. 近年发展的电化学表面等离子体共振(Electrochemical Surface Plasmon Resonance,EC-SPR)是将时间分辨表面等离子体共振光谱技术与电化学方法联用的一种新技术. 本文介绍了SPR和EC-SPR的基本原理,并重点阐述了时间分辨SPR光谱技术与电化学方法联用及应用,该技术已广泛地应用于反应动态过程研究、生物化学传感器、电极/溶液界面的表征、动力学常数的测定以及生物分子相互作用等领域.  相似文献   

4.
A new X-ray detector using surface plasmon resonance (SPR) is proposed. The detector consists of a prism coated with a thin metal film and semiconductor film. Optical laser pulse induces SPR condition on the metal surface, and synchronized X-ray pulse which is absorbed into the semiconductor film can be detected by measuring the change of the resonance condition of the surface plasmon. The expected time and spatial resolution of this detector is better than that of conventional X-ray detectors by combining this SPR measurement with ultra-short laser pulse as the probe beam. Our preliminary investigation using Au and ZnSe coated prism implies this scheme works well as the detector for the ultra-short X-ray pulse.  相似文献   

5.
Liu X  Song D  Zhang Q  Tian Y  Zhang H 《Talanta》2004,62(4):773-779
Surface plasmon resonance (SPR) has been successfully applied for the simple, rapid, and label-free assay of various biomolecules. This assay evaluates a novel wavelength modulation SPR biosensor for the detection of tetanus toxin. The wavelength modulation SPR biosensor is designed based on fixing the incident angle of light and measuring the reflected intensities in the resonance wavelength range spanning 400-800 nm simultaneously. Tetanus toxin (TeNT), one of the most potent toxins known, is synthesized as a 150 kDa single polypeptide chain. The SPR biosensor has been shown to be capable of directly detecting concentration of tetanus toxin as low as 0.028 Lf ml−1. Under selected experimental conditions, the SPR biosensor has a good reproducibility, sensitivity and reversibility. The results illustrate how wavelength modulation SPR biosensor can be used to detect biomolecular interactions.  相似文献   

6.
The technique of surface plasmon-coupled emission (SPCE) involves the coupling of light which is emitted from a fluorophore into the surface plasmon of an adjacent thin metal film, giving rise to highly directional emission. We have combined the advantages of SPCE with the high light collection efficiency of supercritical angle fluorescence by carrying out an immunoassay on a paraboloid array biochip in the absence of the conventional SPCE spacer layer normally used to minimize metal quenching of the fluorescence. In this work, we have successfully demonstrated an SPCE-based assay by utilizing the protein assay layer as the spacer layer. A novel 3 × 3 injection molded polymer biochip with paraboloid elements was used. The paraboloid elements served to enhance the light collection efficiency while the top surface was coated with a gold layer to use excitation of surface plasmons and detection of SPCE emission. Theoretical modeling of the gold-protein layer structure showed that the surface plasmon resonance angles were located in the detection range of the paraboloid biochip. The polarization dependence of SPCE emission was also demonstrated. Finally, a human IgG sandwich immunoassay was carried out which exhibited a limit of detection of ~10 ng/ml using 3σ. The results demonstrate the potential of the SPCE-based paraboloid array biochip as a novel platform for high-throughput analysis of biomolecular interactions.  相似文献   

7.
Present and future of surface plasmon resonance biosensors   总被引:22,自引:0,他引:22  
Surface plasmon resonance (SPR) biosensors are optical sensors exploiting special electromagnetic waves—surface plasmon-polaritons—to probe interactions between an analyte in solution and a biomolecular recognition element immobilized on the SPR sensor surface. Major application areas include detection of biological analytes and analysis of biomolecular interactions where SPR biosensors provide benefits of label-free real-time analytical technology. This paper reviews fundamentals of SPR affinity biosensors and discusses recent advances in development and applications of SPR biosensors.  相似文献   

8.
In this study, we demonstrate a simple method to fabricate surface plasmon resonance (SPR) imaging microarrays using polymer micropatterns. The use of a micrometer-scale polymeric optical screen (microPOS) passivates the region deposited with polymer by completely removing SPR signals or by saturating the SPR signal far beyond the detection range of SPR imaging. Two schemes were suggested to create a surface microPOS by either micropatterning a thick insulating layer before deposition of a metal layer (complete removal of SPR) or after deposition of a metal layer (saturation of SPR signal). The two schemes were successfully applied for the imaging of biological adsorption with a high imaging resolution of approximately 100 microm/pattern and 10 microm separation. The validity of the system was verified with a biotin-streptavidin system as a model for the systematic binding of biomolecules. Further, binding of prostate-specific antigen (PSA) onto the anti-PSA SPR microarray was demonstrated as a useful method for detecting a cancer marker.  相似文献   

9.
《Electroanalysis》2004,16(22):1912-1918
In this study, a field effect transistor (FET)‐type biosensor based on 0.5 μm standard complementary metal oxide semiconductor (CMOS) technology is proposed and its feasibility for detecting deoxyribonucleic acid (DNA) and protein molecules is investigated. Au, which has a chemical affinity with thiol by forming a self‐assembled monolayer (SAM), was used as the gate metal in order to immobilize DNA and protein molecules. A Pt pseudo‐reference electrode was employed for the detection of biomolecules. The sensor was fabricated as a p‐channel (P)MOSFET‐type because PMOSFET with positive surface potential is useful for detecting negatively charged biomolecules from the view point of its high sensitivity and fast response time. DNA and protein molecules were detected by measuring the variation of the drain current due to the variation of biomolecular charge and capacitance. DNA and protein molecules used in the experiment were 15mer–oligonucleotide probe and streptavidin‐biotin protein complexes, respectively. DNA was detected by both in situ and ex situ measurements. Additionally, to verify the interactions among SAM, streptavidin, and biotin, surface plasmon resonance (SPR) measurement was performed.  相似文献   

10.
Bilayered silver/gold films (gold deposited on top of the silver film) were used as substrates for electrochemical surface plasmon resonance spectroscopy (EC-SPR). EC-SPR responses of electrochemical deposition/stripping of copper and redox-induced conformation changes of cytochrome c immobilized onto self-assembled monolayers preformed at these substrates were measured. Influence of the Ag layer thickness and the double-layer capacitance on the EC-SPR behavior was investigated. The results demonstrated that the bilayered Ag/Au metal films produce a sharper SPR dip profile than pure Au films and retain the high chemical stability of Au films. Contrary to the result by the Fresnel calculation that predicts a greater fraction of Ag in the bilayered film should result in a greater signal-to-noise ratio, the EC-SPR sensitivity is dependent on both the Ag/Au thickness ratio and the chemical modification of the surface. Factors affecting the overall SPR sensitivity at the bilayered films, such as the film morphology, potential-induced excess surface charges, and the adsorbate layer were investigated. Forming a compact adsorbate layer at the bilayered film diminishes the effect of potential-induce excess surface charges on the SPR signal and improves the overall EC-SPR sensitivity. For the case of redox-induced conformation changes of cytochrome c, the SPR signal obtained at the bilayered silver/gold film is 2.7 times as high as that at a pure gold film.  相似文献   

11.
Surface plasmon resonance (SPR) and electrochemical measurements are combined in this work to study the interactions of a gold film electrode with aqueous electrolytes of an ionic liquid (IL), 1‐ethyl‐3‐methyl‐imidazolium ethyl sulfate. The optical response of the bulk electrolyte strongly affects the SPR angles, and the critical angle data help to separate these bulk effects from those arising strictly from the electrode surface. The optical parameters of the Au‐electrolyte system are determined by fitting the SPR angle‐spectra to calculated results of a multilayer reflectivity model. Both in the absence and in the presence of externally applied voltages, the SPR signal of the experimental interface is dominated by the dielectric behavior of the bulk electrolyte. No significant chemisorptions are detected for the IL contents (0.036–0.087 mole fraction) of the electrolytes used. The results demonstrate how angle resolved SPR measurements can be employed to determine the suitability of specific ILs as solutes for aqueous background electrolytes in electrochemical SPR sensing experiments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
We report here on the fabrication and characterization of stable thin films of amorphous silica (SiO(x)) deposited on glass slides coated with a 5 nm adhesion layer of titanium and 50 nm of gold, using the plasma-enhanced chemical vapor deposition (PECVD) technique. The resulting surfaces were characterized using atomic force microscopy (AFM), ellipsometry, contact angle measurements, and surface plasmon resonance (SPR). AFM analysis indicates that homogeneous films of silica with low roughness were formed on the gold surface. The deposited silica films showed excellent stability in different solvents and in piranha solution. There was no significant variation in the thickness or in the SPR signal after these harsh treatments. The Au/SiO(x) interfaces were investigated for their potential applications as new surface plasmon resonance sensor chips. Silica films with thicknesses up to 40 nm allowed visualization of the surface plasmon effect, while thicker films resulted in the loss of the SPR characteristics. SPR allowed further the determination of the silica thickness and was compared to ellipsometric results. Chemical treatment of the SiO(x) film with piranha solution led to the generation of silanol surface groups that have been coupled with a trichlorosilane.  相似文献   

13.
简述了表面等离子体共振(SPR)的基本原理,并综述了表面等离子体共振技术在电化学反应过程中的应用。SPR技术可以无需任何标记原位实时地检测分子间的相互作用,也可用于连续监测吸附/脱附和缔合/解离过程。表面等离子共振光谱(SPRS)与电化学技术结合可用来同时表征和处理电极/溶液的界面,在电化学掺杂/去掺杂过程、吸附/脱附反应的研究、痕量物质的检测、薄膜厚度、介电常数的测定等方面的应用已取得了很大的进展。  相似文献   

14.
Electrochemistry and electrochemical surface plasmon resonance (SPR) spectroscopy have been applied to study the electrochemical deposition and the redox transition of poly(4-nitro-1,2-phenylenediamine) (P4NoPD) on gold disk. It was shown that SPR can be the signal transducer for the different redox states of P4NoPD. Using a model biomolecular system, involving streptavidin, biotinylated DNA, and its complementary target DNA, it was found that the presence of nitro groups in P4NoPD allows the biorecognition events to be modulated by voltages. There is minimal nonspecific binding of biomolecules on oxidized (+0.2 V) or as-prepared P4NoPD, and binding occurs more significantly on the reduced P4NoPD (-0.2 to -0.6 V) with the presence of amine groups. The electrochemical deposition of P4NoPD film was also conducted on boron-doped diamond (BDD) electrode. The stability of the reduced P4NoPD film on gold and BDD was comparatively evaluated by electrochemical impedance spectroscopy (EIS). The result showed that BDD allows the electrochemical reduction of the P4NoPD film at wider cathodic limits than gold.  相似文献   

15.
Menegazzo N  Herbert B  Banerji S  Booksh KS 《Talanta》2011,85(3):1369-1375
Surface plasmon resonance spectroscopy is sensitive to near-surface (<300 nm) chemical and physical events that result in refractive index changes. The non-specific nature of the stimulus implies that chemical selectivity in SPR sensing configurations entirely relies upon the chemical recognition scheme employed. Biosensing applications commonly use surface layers composed of antibodies or enzymes for biomolecular recognition. Monitoring of volatile compounds with SPR spectroscopy, however, has not been widely discussed due to the difficulty in selectively responding to small molecules (<100 Da) in addition to the limited refractive index changes resulting from the interaction between the plasmon wave and volatile compounds.Different strategies explored thus far for sensing of small molecules have relied on optical and electrical changes of the recognition layer upon exposure to the analyte, yielding an indirect measurement. Examples of coatings used for gas-phase sensing with SPR include conducting metal oxides, polymers and organometallic dyes. Electrically conducting polymers, like polyaniline and polypyrrole, display dramatic conductivity changes in the presence of certain compounds. This property has resulted in their routine incorporation into different sensing schemes. However, application of electrically conducting polymers to SPR gas-phase sensing has been limited to a few examples, despite encouraging results.The emeraldine salt form of polyaniline (PAni) demonstrates a decreased electrical conductivity correlated to NH3 concentration. In this contribution, PAni doped with camphorsulfonic acid (PAni-CSA) was applied to gas-phase sensing of NH3 by way of SPR spectroscopy. Spectroscopic ellipsometry was used to determine the optical constants (n and k) for emeraldine salt and emeraldine base forms of PAni, confirming the wavelength-dependent response observed via SPR. The analytical performance of the coatings show that a limit of detection of 32 ppm NH3 based on precision of the mass-flow controllers used and an estimated method limit of detection of ∼0.2 ppm based on three standard deviations of the blank. This is directly comparable to other, more established sensing architectures.  相似文献   

16.
A new commercial surface plasmon resonance (SPR) imaging analysis system with a novel SPR dip angle scanning principle allows the measurement, without the need for labeling, of the exact SPR dip angle. With this system hundreds of biomolecular interactions can be monitored on microarrays simultaneously and with great precision. The potency of this system is demonstrated by automatically monitoring the interactions between citrullinated peptides and serum autoantibodies of 50 rheumatoid arthritis (RA) patients and 29 controls in a single step. The smallest antibody concentration that could be measured in this experimental setup was 0.5 pM.  相似文献   

17.
使用生物分子相互作用分析(Biomolecular interaction analysis,BIA)技术实时监测了在链霉素和素表面层层组装亲和素-生物素化抗体多层膜的过程,结果表明,通过链霉素和素与生物素之间的强亲和作用,能够在表面形成均一的多层膜,并用实时BIA技术求得了每层蛋白质的表面浓度,对于生物素化抗体,单层吸附表面浓度为1.32ng/mm^2;对于链霉亲和素,单层吸附表面浓度为2.93ng/mm^2。同时对蛋白质在表面的排列状态进行了探讨。  相似文献   

18.
We report the preparation and characterization of a matrix-free carboxylated surface plasmon resonance (SPR) sensor chip with high sensing efficiency by functionalizing a bare gold thin film with a self-assembled monolayer of 16-mercaptohexadecanoic acid (SAM–MHDA chip). The self assembled monolayer surface coverage of the gold layer was carefully evaluated and the SAM was characterized by infrared reflection absorption spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, X-ray reflectivity-diffraction, and SPR experiments with bovine serum albumin. We compared the SPR signal obtained on this chip made of a dense monolayer of carboxylic acid groups with commercially available carboxylated sensor chips built on the same gold substrate, a matrix-free C1 chip, and a CM5 chip with a ~100 nm dextran hydrogel matrix (GE Healthcare). Two well-studied interaction types were tested, the binding of a biotinylated antibody (immunoglobulin G) to streptavidin and an antigen–antibody interaction. For both interactions, the well characterized densely functionalized SAM–MHDA chip gave a high signal-to-noise ratio and showed a gain in the availability of immobilized ligands for their partners injected in buffer flow. It thus compared favourably with commercially available sensor chips.  相似文献   

19.
Nanostructured noble metals exhibit an intense optical near field due to surface plasmon resonance, therefore promising widespread applications and being of interest to a broad spectrum of scientists, ranging from physicists, chemists, and materials scientists to biologists. A wealth of research is available discussing the synthesis, characterization, and application of noble metal nanoparticles in optical sensing. However, with respect to the sensitivity of the frequency and width of these surface plasmon resonance modes to the particle’s shape, size, and environment, in nearly every case, success strongly depends on the availability of highly stable, adhesive, and sensitive nanoparticles. This undoubtedly presents a challenging task to nanofabrication. The past decade has witnessed fascinating advances in this field, in particular, the construction of oxide-based hybrid plasmonic interfaces to overcome the problem addressed above by (1) coating the metallic nanostructures with thin overlayers to form sandwiched structures or (2) embedding metallic nanostructures in a dielectric matrix to obtain metal/dielectric matrix nanocomposite films. In this critical review, we focus on recent work related to this field, beginning with a presentation of hybrid films with enhanced structural and optical stability, readily and selectively designed using chemical and physical techniques. We then illustrate their interesting optical properties and demonstrate exciting evidence for the postulated application in surface plasmon sensing fields. Finally, we survey the work remaining to be done for that potential to be realized.  相似文献   

20.
Biosensors based on surface plasmon resonance (SPR) have become a central tool for the investigation and quantification of biomolecules and their interactions. Nucleic acids (NAs) play a vital role in numerous biological processes and therefore have been one of the major groups of biomolecules targeted by the SPR biosensors. This paper discusses the advances of NA SPR biosensor technology and reviews its applications both in the research of molecular interactions involving NAs (NA–NA, NA–protein, NA–small molecule), as well as for the field of bioanalytics in the areas of food safety, medical diagnosis and environmental monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号