首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stereospecific 1,2‐migration of boronate complexes is one of the most representative reactions in boron chemistry. This process has been used extensively to develop powerful methods for asymmetric synthesis, with applications spanning from pharmaceuticals to natural products. Typically, 1,2‐migration of boronate complexes is driven by displacement of an α‐leaving group, oxidation of an α‐boryl radical, or electrophilic activation of an alkenyl boronate complex. The aim of this article is to summarize the recent advances in the rapidly expanding field of electrophile‐induced stereospecific 1,2‐migration of groups from boron to sp2 and sp3 carbon centers. It will be shown that three different conceptual approaches can be utilized to enable the 1,2‐migration of boronate complexes: stereospecific Zweifel‐type reactions, catalytic conjunctive coupling reactions, and transition metal‐free sp2–sp3 couplings. A discussion of the reaction scope, mechanistic insights, and synthetic applications of the work described is also presented.  相似文献   

2.
Over the last decade, 1,2-metallate rearrangement of boronate complex has been dominating the literature of organoboron chemistry for the construction of very important C−C and C−boron bonds. Owing to the coordinative unsaturated nature of the boron atom, a nucleophile can attack on boron center for the formation of a boronate complex, which triggers 1,2-migration under electrophilic activation at the α-carbon. Apart from using stochiometric electrophilic activating reagents, several catalytic methods using transition metals in the presence or absence of light have been reported. The 1,2-migration of boronate complexes allows synthesis of many different classes of racemic and chiral compounds including a wide range of substituted heterocycles. Synthesis of chiral and achiral substituted heterocycles by using 1,2-metallate rearrangement of boronate complexes has been extensively reported by several groups owing to its prevalence in medicinal chemistry. This minireview highlights the methods known to date for the synthesis of heteroaryls by using 1,2-migration of boronate complexes, organized in a chronological manner.  相似文献   

3.
Enantioenriched secondary allylic carbamates have been deprotonated with sBuLi and reacted with boronic esters. In contrast to other electrophiles, high α-selectivity was observed and the boronate complexes were formed with almost complete retention of stereochemistry. The boronate complexes underwent a stereospecific 1,2-migration leading to tertiary allylic boronic esters with high er (>98:2). The scope of the reaction has been explored and found to embrace a broad range of both allylic carbamates and boronic esters. The methodology has been applied to an eight-step, stereoselective synthesis of each of the diastereoisomers of C30 botryococcene.  相似文献   

4.
The synthesis of a diverse range of heterobiaryls has been achieved by a transition-metal-free sp2–sp2 cross-coupling strategy using lithiated heterocycle, aryl or heteroaryl boronic ester and an electrophilic halogen source. The construction of heterobiaryls was carried out through electrophilic activation of the aryl–heteroaryl boronate complex, which triggered 1,2-migration from boron to the carbon atom. Subsequent oxidation of the intermediate boronic ester afforded heterobiaryls in good yield. A comprehensive 11B NMR study has been conducted to support the mechanism. The cross coupling between two nucleophilic cross coupling partners without transition metals reveals a reliable manifold to procure heterobiaryls in good yields. Various heterocycles like furan, thiophene, benzofuran, benzothiophene, and indole are well tolerated. Finally, we have successfully demonstrated the gram scale synthesis of the intermediates for an anticancer drug and OLED material using our methodology.  相似文献   

5.
Enones are widely utilized linchpin functional groups in chemical synthesis and molecular biology. We herein report the direct conversion of boronic esters into enones using commercially available methoxyallene as a three-carbon building block. Following boronate complex formation by reaction of the boronic ester with lithiated-methoxyallene, protonation triggers a stereospecific 1,2-migration before oxidation generates the enone. The protocol shows broad substrate scope and complete enantiospecificity is observed with chiral migrating groups. In addition, various electrophiles could be used to induce 1,2-migration and give a much broader range of α-functionalized enones. Finally, the methodology was applied to a 14-step synthesis of the enone-containing polyketide 10-deoxymethynolide.  相似文献   

6.
Completely stereospecific 1,2-migration of alkyl groups was achieved in Et2AlCl promoted pinacol-type rearrangement of chiral β-mesyloxy alcohols to give optically pure α-alkyl ketones including both enantiomers of 4-methyl-3-hexanone, an alarm pheromone of ant.  相似文献   

7.
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3)−C and C(sp3)-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron “ate” complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the “classical” methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C−H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).  相似文献   

8.
BCl3 is an inexpensive electrophile which induces the borylative cyclization of a wide range of substituted alkynes to regioselectively form polycycles containing synthetically versatile C(sp2)? boronate esters. It proceeds rapidly, with good yields and is compatible with a range of functional groups and substitution patterns. Intermolecular 1,2‐carboboration of alkynes is also achieved using BCl3 to generate trisubstituted vinyl boronate esters.  相似文献   

9.
BCl3 is an inexpensive electrophile which induces the borylative cyclization of a wide range of substituted alkynes to regioselectively form polycycles containing synthetically versatile C(sp2) boronate esters. It proceeds rapidly, with good yields and is compatible with a range of functional groups and substitution patterns. Intermolecular 1,2‐carboboration of alkynes is also achieved using BCl3 to generate trisubstituted vinyl boronate esters.  相似文献   

10.
There is considerable interest in incorporating fluorine into agrochemicals and pharmaceuticals to improve their biological properties. Whilst a number of methods have been reported for installing CH2F and CHF2 groups, they are mainly limited to radical reactions, which are invariably racemic. Herein, we report the divergent, stereospecific reaction of fluoroiodomethyllithium with boronic esters to give α-fluoro-boronic esters. These unique intermediates can be readily transformed into the corresponding mono- or difluoromethylated compounds through proto- or fluorodeboronation, respectively. The use of the highly unstable fluoroiodomethyllithium was key to allowing rapid 1,2-migration over competing decomposition of the carbanion. DFT calculations informed and supported the experimental findings.  相似文献   

11.
The individual molecules of α‐chloroalkenyl boronates include both an electrophilic C−Cl bond and a nucleophilic C−B bond, which makes them intriguing organic synthons. Reported herein is a stereodivergent synthesis of both E and Z α‐chloroalkenyl N ‐methyliminodiacetyl (MIDA) boronates through the direct chlorination of alkenyl MIDA boronates using t BuOCl and PhSeCl reagents, respectively. Both reaction processes are stereospecific and the use of sp3‐B MIDA boronate is the key contributor to the reactivity. The synthetic value of the boronate products was also demonstrated.  相似文献   

12.
B(sp2)–B(sp3) diborane species based on bis(catecholato)diboron and N‐heterocyclic carbenes (NHCs) underwent catechol/bromide exchange selectively at the sp3‐hybridized boron atom. The reduction of the resulting 1,1‐dibromodiborane adducts led to reductive coupling and isolation of doubly NHC‐stabilized 1,2‐diboryldiborenes. These compounds are the first examples of molecules exhibiting π‐electron delocalization over an all‐boron chain.  相似文献   

13.
Addition reactions in acidic media have been performed on the oxirane ring of unsubstituted, 2-methyl- and 2,3-dimethyl- substituted 2,3-epoxy-4a,12a-diaza-1,2,3,4,4a,5,12,12a-octahydronaphthacene-5,12-diones. These reactions proceed in a stereospecific way; the Furst-Plattner rule of 1,2-trans-diaxial ring-opening is obeyed as can be deduced from the nmr stereochemical study on the terminal piperidazine-ring moiety of the addition products. Acylation shift effects and 1,3-syn-diaxial interactions have been utilized to assist stereochemical assignments. The geometry of the ring corresponds in most cases to a chair slightly distorted by the sp2-sp3 character of the nitrogens. Some of the less highly substituted among the cleavage products show certain peculiarities in their spectra, and are presumed to be in conformational equilibrium.  相似文献   

14.
A number of new transition metal catalyzed methods for the formation of C(sp2)–C(sp3) bonds have recently been described. These reactions often utilize bidentate polypyridyl‐ligated Ni catalysts, and paramagnetic NiI halide or aryl species are proposed in the catalytic cycles. However, there is little knowledge about complexes of this type. Here, we report the synthesis of paramagnetic bidentate polypyridyl‐ligated Ni halide and aryl complexes through elementary reactions proposed in catalytic cycles for C(sp2)–C(sp3) bond formation. We investigate the ability of these complexes to undergo organometallic reactions that are relevant to C(sp2)–C(sp3) coupling through stoichiometric studies and also explore their catalytic activity.  相似文献   

15.
Abstract

Chemical syntheses of biologically active oligosaccharides, glycolipids and glycopeptides requires efficient stereospecific glycosylation reactions.2 One of the most effective glycosylation methods involves activation of anomeric imidates, particularly mchloroacetimidates, by Lewis acids such as boron trifluoride etherate (BF3·OEt2), mmethylsilyl mfluoromethanesulfonate (TMSOTF)3 and mfluoromethanesulfonic anhydride.4 In a recent example from this laboratory, BF3·OEt2, has been used to promote the glycosylation of methyl 2,3,6-tri-O-benzoyl-B-D-galactopyranoside (I)5 with 2-deoxy-2-phthalimido-3,4,6-tri-O-acetyl-B-D-galactopyranosyl mchloroacetimidate (I): see Scheme 1. The expected β1-4-linked disaccharide III was obtained in 40% yield. The yield was so low since both the α-anomer and a 1-3-linked disaccharide were formed as by products, the latter in particularly large quantities (cf. Ref.7). The 1-3 disaccharide could be formed from a product of acid-catalyzed 3,4-migration of the benzoyl group which is not surprising, considering the cis relationship of the 3,4-hydroxyl groups in galactose.8 In fact, when the glycosylation reaction was quenched before all unreacted alcohol was consumed, the chromatographic fraction corresponding to the starting alcohol II contained at least three different tribenzoates (as shown by NMR analysis).9 Other promoters, ZnBr2 10 and TMSOTF, led to lower yields and more complicated mixtures than BF3·OEt2.  相似文献   

16.
C(sp2)‐centered homo‐ and hetero‐nuclear gold complexes have attracted widespread interests in recent decades. Studies of this type of complexes may deepen the understandings of the intermediates in Au‐catalyzed organic reactions and explore new applications in catalytic and material science. The focuses of this review include the synthesis, structural characteristics, properties and applications of C(sp2)‐centered homo‐ and hetero‐nuclear gold complexes according to different structural classifications.  相似文献   

17.
An intramolecular 1,2‐boryl‐anion migration from boron to carbon has been achieved by selective activation of the π system in [(vinyl)B2Pin2)]? using “soft” BR3 electrophiles (BR3=BPh3 or 9‐aryl‐BBN). The soft character is key to ensure 1,2‐migration proceeds instead of oxygen coordination/B?O activation. The BR3‐induced 1,2‐boryl‐anion migration represents a triple borylation of a vinyl Grignard reagent using only B2Pin2 and BR3 and forms differentially protected 1,1,2‐triborylated alkanes. Notably, by increasing the steric bulk at the β position of the vinyl Grignard reagent used to activate B2Pin2, 1,2‐boryl‐anion migration can be suppressed in favor of intermolecular {BPin}? transfer to BPh3, thus enabling simple access to unsymmetrical sp2?sp3 diboranes.  相似文献   

18.
A tandem three-component C−H bond addition involving the activation of an inert C(sp3)−H bond is reported. The process enables the direct regioselective synthesis of 1,2-difunctionalized arenes with the formation of C(sp3)− and C(sp2)−C(arene) bonds. 2-Iodobenzoic acid derivatives behave as masked bifunctional reagent (BFR) and react with 2-pyridyl-methyl sulfoximine (MPyS) protected aliphatic acids bearing α,α-disubstituted groups, and alkenes to produce β-aryl-δ-alkenyl amide derivatives in a single operation. The transformation involves Pd(II)/Pd(IV) and Pd(II)/Pd(0) catalytic systems. Detailed mechanistic studies, including density functional theory (DFT) calculations, reveal the formation of large T-shaped palladacycles and the onset of a 1,2-palladium migration via decarboxylation.  相似文献   

19.
Transition-metal-catalyzed asymmetric carbon−carbon bond formation to forge phosphonates with an α-chiral carbon center through C(sp3)−C(sp3) and C(sp2)−C(sp3) couplings has been successful. However, the enantioselective C(sp)−C(sp3) coupling has not yet been disclosed. Reported herein is an unprecedented enantioconvergent cross-coupling of alkynyl bromides and α-bromo phosphonates to deliver chiral α-alkynyl phosphonates.  相似文献   

20.
Trifluoromethyl-bearing 5-membered rings are prevalent in bioactive molecules, but modular approaches to these compounds by functionalization of robust C(sp3)−H bonds in a direct and selective manner are extremely challenging. Herein we report the rhodium-catalyzed α-CF3-α-alkyl carbene insertion into C(sp3)−H bonds of a broad range of substrates to access 7 types of CF3-bearing saturated 5-membered carbo- and heterocycles. The reaction is particularly effective for benzylic C−H insertion exerting good site-, diastereo- and enantiocontrol, and applicable to the synthesis of chiral CF3 analogues of bioactive molecules. Ruthenium α-CF3-α-alkyl carbene complexes underwent stoichiometric reactions to give C−H insertion products, lending evidence for the involvement of metal α-CF3-α-alkyl carbene species in the catalytic cycle. DFT calculations revealed that the π⋅⋅⋅π attraction and intra-carbene C−H⋅⋅⋅F hydrogen bond elucidate the origin of selectivity of the benzylic C−H insertion reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号