首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 484 毫秒
1.
以晋城无烟煤和生物质(肉骨粉Meat and Bone Meal∶MBM)为原料,在固定床上采用快速热解法制备了煤和生物质焦样.采用扫描电子显微镜结合X射线能谱分析仪(SEM-EDX)分析了煤焦和MBM焦的表面形态和组成;在热天平上采用等温热重法进行了煤焦/MBM焦混合物的水蒸气气化研究.实验结果表明,煤/MBM焦混合物的共气化实验碳转化率高于两者不存在协同作用时的计算值,这是由于MBM焦含有较多的Na、Ca等元素,这些物质对煤焦气化起到了催化作用.当对MBM焦进行脱灰处理后,其气化反应性显著下降.混合物中MBM焦的质量分数在20%~80%时,随着MBM焦含量的增加,混合物中的煤焦反应性相应提高.  相似文献   

2.
以晋城无烟煤和生物质(肉骨粉Meat and Bone Meal:MBM)为原料,在固定床上采用快速热解法制备了煤和生物质焦样。采用扫描电子显微镜结合X射线能谱分析仪(SEM-EDX)分析了煤焦和MBM焦的表面形态和组成;在热天平上采用等温热重法进行了煤焦/MBM焦混合物的水蒸气气化研究。实验结果表明,煤/MBM焦混合物的共气化实验碳转化率高于两者不存在协同作用时的计算值,这是由于MBM焦含有较多的Na、Ca等元素,这些物质对煤焦气化起到了催化作用。当对MBM焦进行脱灰处理后,其气化反应性显著下降。混合物中MBM焦的质量分数在20%~80%时,随着MBM焦含量的增加,混合物中的煤焦反应性相应提高。  相似文献   

3.
煤和生物质共气化制备富氢气体的实验研究   总被引:2,自引:0,他引:2  
在煤处理量为8kg/h的小型流化床反应器上,以富氧空气和水蒸气为气化介质,对煤和生物质共气化制取富氢燃气进行了实验研究。在850℃~1 050℃主要考察了空气当量比、水碳比、生物质比例和生物质种类对燃气组成和气体产率的影响。结果表明,对煤和稻草混合体系,稻草质量比为33%时,空气当量比增加,CO2含量显著增加,H2、CO和CH4含量减少,气体产率增加;水碳比增加,CO2和CH4含量增加,CO和H2含量减小,气体产率先增加后减小;生物质比例增加,CO2、H2和CH4含量增加,CO含量降低,气体产率先增加后减小,当生物质比例小于50%时,可以实现体系的稳定运行。对于三种不同的煤与生物质混合体系,煤与高粱秆共气化所得煤气中H2含量最高,气体产率的顺序为:煤/木屑煤/高粱秆煤/稻草煤。实验中H2在煤气中的体积分数最高可达37.25%,最大产率为0.54m3/kg。  相似文献   

4.
为了更进一步了解CFB气化能力和碳利用率,本文报道了两种煤焦(西山焦煤飞灰,神木煤)以二氧化碳及氧气混合物为气化介质,在小型鼓泡流化床上进行气化反应的研究,并与相同气化条件下的循环流化床气化数据进行了比较。研究结果表明:在相同直径气化反应装置上,相同的气化条件下,循环流化床(CFB)的气化碳转化率、气化强度远远高于鼓泡流化床(BFB)的气化结果,但BFB的煤气中可燃气组成高于CFB的。CFB气化反应装置更适合于生产中、低热值煤气。  相似文献   

5.
报道了两种煤/焦(西山焦煤飞灰、神木煤),在小型循环流化床(CFB)气化反应装置上,以二氧化碳及氧气混合物为气化介质,在不同条件(900~970°C,0~30%氧含量)下的气化反应的研究。结果表明,提高气化温度,气化反应速度提高,尾气中可燃气体浓度(CO,H2,CH4)、碳转化率及气化效率明显提高。气化介质中的氧含量增加,CO浓度、碳转化率及气化强度明显增加。反应性高、挥发分多的煤种更适合在CFB气化反应装置上进行气化反应。  相似文献   

6.
煤焦部分气化、燃烧集成热重分析研究   总被引:1,自引:1,他引:0  
在热天平上进行了煤焦部分气化、燃烧的实验研究。所得到的三种不同煤焦 (神木、彬县、西山 )在不同温度 ,不同气化碳转化率下的部分气化 ,燃烧失重曲线表明 :煤种、气化碳转化率对燃烧失重均有影响。气化碳转化率越高 ,所得到的焦燃烧速率越小。同时从实验中得到 :正确选择气化碳转化率在进行部分气化、燃烧集成优化中是非常重要的。  相似文献   

7.
生物质流化床富氧气化的实验研究   总被引:12,自引:7,他引:12  
在常压流化床装置上进行了生物质在富氧条件下定向气化的实验研究。实验主要考察了氧的当量比和氧体积分数对气化气组成、碳转化率和气体热值的影响。当量比值是与温度紧密联系的一个量,本实验主要通过调节进料量来改变它的值,随着当量比的变化(0.21~0.29),燃气成分也会改变,其中变化最大的是H2、CO。H2体积分数显著增加,CO和CH4体积分数有降低的趋势,使燃气热值降低;氧体积分数是富氧气化过程中较重要的参数,在实验研究的范围内,发现增大氧气体积分数可以提高H2体积分数及有利于调节H2/CO(体积分数)的比值。当氧气体积分数从21%提高到45%,H2体积分数从20%增加到27.7%,H2/CO(体积分数)从0.38增加到0.75,比较接近合成液体燃料的气体比值。  相似文献   

8.
高温下制焦温度对煤焦气化活性的影响   总被引:23,自引:5,他引:23  
研究了高温下扎莱诺尔、后布连、东胜、西山和沈阳五种煤焦的碳转化率和气化速率与制焦温度的关系,并考察了气化温度对不同制焦温度下所制得扎莱诺尔煤焦气化活性的影响。实验表明:制焦温度对煤的气化活性的影响不尽相同,在较低的制焦温度1000℃下,五种煤焦表现出很大的气化速率和碳转化率的差距,但随制焦温度的提高煤焦的气化活性下降,制焦温度在1200℃时,四种煤焦的气化速率逐步接近,当制焦温度达到1400℃时,除沈阳煤外,四种煤焦的气化反应速率与碳转化率分别趋于相同。从五种煤以及不同制焦温度下所制得相应焦的SEM分析发现,当制焦温度超过相应煤灰分的软化温度时,制焦温度将直接影响焦中矿物质的分散程度及聚集状态。随着温度的提高,矿物质颗粒也开始从初始的随机分散分布发展到团聚,温度越高,聚集态的矿物质颗粒尺寸越大,其催化作用也越弱。在高温下灰份的熔融是制焦温度影响煤焦气化速率的最重要原因之一。  相似文献   

9.
基于热重分析仪考察了神府烟煤焦、稻草焦和神府烟煤-稻草混合焦样气化反应活性及共气化过程协同行为。并借助电感耦合等离子体发射光谱仪和扫描电子显微镜-能谱仪联用装置探讨了共气化过程活性矿物组分的迁移转化特性,以关联解释共气化协同行为演变。结果表明,与煤焦单独气化相比,稻草焦掺混有利于提高煤焦整体气化反应活性。混合焦样共气化过程协同行为随碳转化率的提高呈先逐渐减弱的抑制作用,达到某一碳转化率(记为转折碳转化率)后呈不断增强的协同促进作用,且转折碳转化率随气化温度升高而提高。神府烟煤-稻草混合焦样共气化过程协同行为演变主要归因于共气化过程活性K和Ca转化特性的共同影响。神府烟煤-稻草混合焦样共气化整体协同行为呈协同促进作用,并随气化温度的升高而减弱。  相似文献   

10.
在热天平中采用等温热重法对石油焦、稻草焦、石油焦/稻草混合物以及石油焦/稻草焦混合物进行了CO2共气化研究,实验温度900~1050℃,添加稻草焦的质量比为0~0.5,考察稻草焦对石油焦的催化气化作用.结果表明,在一定气化温度下,石油焦和稻草焦混合物的共气化碳转化率高于各自气化碳转化率的简单加和,具有一定的协同效应,混合物的气化反应速率随着稻草焦添加比例的增加而升高.石油焦、稻草、稻草焦及其各个混合物的反应活性由大到小的顺序为:稻草半焦>脱灰稻草半焦>石油焦/稻草混合物>石油焦/稻草焦混合物>石油焦/脱灰稻草混合物>石油焦/脱灰稻草半焦混合物>石油焦.  相似文献   

11.
煤与生物质的相互作用已被广泛研究。但是,其相互作用机制通常是基于混合焦样的物理化学结构和反应性而提出。在这项工作中,基于不同形状和粒度将无烟煤与生物质共热解后的混合焦分离,然后通过分析分离后煤焦的结构和反应性来揭示煤与生物质相互作用机制。在热解温度为600和900℃条件下,在固定床反应器中制备了混合有不同比例的秸秆(CS)的无烟煤焦样。采用了电感耦合等离子体发射光谱法(ICP-OES)和X射线衍射(XRD)对煤焦的AAEM浓度和微晶结构进行了检测。利用TGA设备分析了分离后的煤焦与CO2的气化反应性。结果表明,随着掺混比例从0增加到80%,煤焦中活性K和Mg的浓度逐渐增加,并形成更为无序的碳结构。共热解过程中,更多的AAEM种类被混合物中的煤焦通过挥发分-焦相互作用捕获,而不是随生物质挥发分逸出。同时,热解温度的升高引起了K和Na挥发和失活,也导致石墨化度的降低。而且,CS的添加和更低的热解温度均可提高煤焦的气化反应性。此外,在煤焦的碱性指数AI与反应性指数R0.5之间建立了较好的线性关系(R2=0.9009),表明在煤与生物质共气化过程中,AAEMs对提高煤焦气化反应活性起主导作用。  相似文献   

12.
以遵义无烟煤煤焦为气化原料,以稻草灰和棉秆灰为生物质灰添加剂,基于热重分析仪开展焦样-CO_2等温气化实验,以探究生物质灰添加对煤焦气化反应特性的影响,并基于气化过程焦样固体结构演变对其进行关联解释。研究表明,稻草灰和棉杆灰的添加有利于提高煤焦气化反应活性,这主要归因于生物质灰添加有利于气化过程煤焦活性矿物质含量增加和碳结构有序度降低。且稻草灰和棉秆灰的添加对焦样气化反应活性的增加幅度随气化温度升高而减小,这可解释为生物质灰添加对气化过程煤焦活性矿物质含量增加和碳结构有序度降低的幅度随气化温度升高而减小。此外,棉秆灰对煤焦气化反应活性的促进作用较稻草灰更为显著,这主要由于棉杆灰的添加对气化半焦中活性AAEM含量的增加作用以及碳结构石墨化进程的抑制作用更加明显。  相似文献   

13.
在热重分析仪上进行了稻秆半焦和神府煤与CO2非等温混合气化实验,升温速率20℃/min,终温1200℃。实验结果表明,两种燃料在热解阶段符合加权计算规律,但是在超过800℃的高温气化阶段具有显著的协同作用。与不考虑协同作用的计算结果相比,添加稻秆半焦的煤焦气化反应速率提高,气化反应结束温度降低26℃,最大失重速率提高22%。协同作用的主要原因是稻秆半焦中碱金属具有催化作用,通过动力学分析表明混合气化活化能比煤焦单独气化要低。  相似文献   

14.
基于常压热重分析仪(TG)开展了神府烟煤焦(SF char)、水热炭焦(HTC char)及其混合物等温CO_2气化实验以研究气化温度(800-950℃)、掺混比(3∶1、1∶1、1∶3)对共气化特性的影响,并探讨了气化反应活化能及其影响因素。结果表明,HTC因其较大的比表面积和较多的灰分而具有较强的气化活性。低HTC掺混比的混合物气化活性对温度变化敏感。低温下混合物的气化活性受HTC掺混影响显著。反应活化能随着反应转化率的增大而逐渐增大并趋于稳定。进一步研究表明,混合物的活化能与其掺混比以及活性矿物(K+Na)/Ca的物质的量比均存在近似线性关系。  相似文献   

15.
甲烷和二氧化碳在煤焦上反应制备合成气实验研究   总被引:3,自引:1,他引:2  
以煤与甲烷共转化制备合成气的研究为背景,通过考察固定床反应器上甲烷和二氧化碳分别在石英砂、煤灰和煤焦上的反应过程,证实了煤焦中的碳结构在共转化过程中对甲烷转化具有催化作用。同时考察了反应温度(1073K~1223K)、CH4/CO2比(0.33~3.00)和气固接触时间等工艺条件对甲烷转化率、气相产物中H2/CO比的影响。结果表明,甲烷的转化率随着反应温度和气固接触时间的增加而增大,随CH4/CO2比的增加而减小。在考察范围内甲烷的转化率最高达到了86%。反应物中CH4/CO2比的改变可以起到调节产品气中H2/CO比的作用,0.4~2.0调节。  相似文献   

16.
采用热重分析仪考察了气化温度(850-1 150℃)和煤焦粒径(60、505、950、1 515、2 000μm)对常压下神木煤焦气化反应的影响。在此基础上,运用体积模型、缩核模型和随机孔模型研究了煤焦常压二氧化碳气化反应动力学,分析了内扩散对煤焦气化反应的影响。结果表明,随机孔模型能够准确预测反应速率随煤焦转化率的变化。基于本征动力学数据,通过对Thiele模数、内扩散效率因子的计算,并将其与实验效率因子相比较,发现计算效率因子能够评估内扩散对初始气化反应的影响,但不能准确评估整个气化过程中内扩散对气化反应的影响。  相似文献   

17.
氢气存在下的煤焦水蒸气气化: I 反应特性研究   总被引:2,自引:2,他引:0  
分别以水蒸气/惰性气混合气、水蒸气/氢气混合气作为气化剂,在常压和875℃~950℃下,采用热天平对1200℃快速热解神府煤焦的气化反应特性进行了研究,并考察了气化过程中煤焦结构的变化及其对气化反应的影响。实验发现,煤焦在水蒸气/氢气作为气化剂条件下的气化反应过程可分为两个阶段,首先是反应急剧进行的阶段,然后是反应速率趋于稳定的阶段,且反应速率接近于石墨的反应速率。该现象与煤的化学结构有关,第一阶段气化剂与活泼性物质 碳氢支链、含氧官能团的反应,第二阶段气化剂与芳香碳的反应;煤焦在水蒸气/氢气气氛下,气化过程中的碳难以转化完全。神府煤焦的SEM表明,煤焦表面有大量的裂缝、孔隙、褶皱、及碎块。碎块表面光滑,这些物质覆盖了内部裂缝与孔隙。煤焦和水蒸气/氢气气化残焦(碳转化率68%)由于气化反应,其碎块减少,表面的大孔暴露出来。比较两种气化剂条件下的气化反应过程发现,水蒸气/惰性气气化反应速率随碳转化率的增加而缓慢均匀地下降;水蒸气/氢气气化反应速率随碳转化率增加先迅速降低,而后较缓慢降低。  相似文献   

18.
在热天平中采用等温热重法对石油焦、稻草焦、石油焦/稻草混合物以及石油焦/稻草焦混合物进行了CO2共气化研究,实验温度900~1 050 ℃,添加稻草焦的质量比为0~0.5,考察稻草焦对石油焦的催化气化作用。结果表明,在一定气化温度下,石油焦和稻草焦混合物的共气化碳转化率高于各自气化碳转化率的简单加和,具有一定的协同效应,混合物的气化反应速率随着稻草焦添加比例的增加而升高。石油焦、稻草、稻草焦及其各个混合物的反应活性由大到小的顺序为:稻草半焦>脱灰稻草半焦>石油焦/稻草混合物>石油焦/稻草焦混合物>石油焦/脱灰稻草混合物>石油焦/脱灰稻草半焦混合物>石油焦。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号