首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
张勇  冯增国  刘凤香  张爱英 《化学学报》2002,60(12):2225-2231
用熔融缩聚法合成了一系列基于聚对苯二甲酸丁二醇酯(PBT)、聚丁二酸丁 二醇酯(PBS)及聚乙二醇(PEG)的嵌段共聚物(PBT-co-PBS/PEG)。^1H NMR结 构分析显示,软段摩尔百分含量恒为20%。随组成中PBS含量增加,软段质量百分 含量略微升高,硬段PBT平均序列长度由2.80逐步减至1.23,PBS平均序列长度由1. 27逐步增加到4.76,无规度在1.1附近,两者呈无规分布。受组成及硬段平均序 列长度变化影响,材料内部呈微观相分离状态,DSC热分析曲线上可分别观察到软 、硬段熔点(Tm,s,Tm,h)及玻璃化转变温度(Tg,s,Tg,h)。硬段熔点及结晶度随 PBS含量升高而降低,在50-60mol%处达到最小值,则是PBS与PBT二者间形成共晶 所致。力学性能测试及水解降解实验表明,将脂肪族聚酯PBS引入PEGT/PBT共聚体 系,可赋予高分子链更好的柔韧性及亲水性,加快降解速率。  相似文献   

2.
不同软段长度PBT-co-PBS-b-PEG嵌段共聚物的合成与表征   总被引:6,自引:0,他引:6  
用熔融缩聚法合成了一系列具有不同软段长度的聚对苯二甲酸丁二酯 (PBT) co 聚丁二酸丁二酯(PBS) b 聚乙二醇 (PEG)嵌段共聚物 (PTSG) ,考察了PEG分子量 (Mn(PEG) )及PBS摩尔分数 (MPBS)对材料性能的影响 实验表明 ,随Mn(PEG)增加 ,缩聚反应时间延长 ,所得产物分子量均呈较为对称的单峰分布 ,多分散性指数小于 2 0 硬段序列结构分析显示 ,随MPBS 增加 ,PBT平均序列长度减小 ,而PBS平均序列长度增加 ,二者呈无规分布 .受组成及硬段平均序列长度变化影响 ,材料内部呈微观相分离状态 ,DSC曲线上可分别观察到软、硬段熔点及玻璃化转变温度 ;硬段熔点及结晶度随MPBS升高而降低 ,主要是受其平均序列长度变化及共晶作用所致 .材料断裂延伸率及降解速率均随Mn(PEG)及MPBS增加而增加 ,可见提高软段长度及降低硬段结晶度等均能有效改善共聚物高分子链的柔韧性及亲水性 ,赋予共聚物更好的降解性能 .  相似文献   

3.
用低温溶液法合成了以聚二甲基硅氧烷(PSX)为软段、聚对苯二甲酸酚酞酯(PAE)为硬段的〔-(AB)-n〕型多嵌段共聚物。对共聚物结构的表征表明,使用该方法可得到硅氧烷含量可控的分子量较高的共聚物。随软段长度及含量的不同,既可得到弹性体也可得到较坚硬的材料。共聚物具有两相结构、较好的力学性能、耐热性及成膜性。  相似文献   

4.
以熔融缩聚法合成了一系列基于聚乙二醇 (PEG) 聚对苯二甲酸丁二醇酯 (PBT)的聚醚酯热塑性弹性体 ,用NMR、IR、DSC及力学性能测试等方法表征了材料的结构及性能 .讨论了在相同软段长度情况下 ,不同硬段长度对材料结构与性能的影响 .实验表明 ,随着体系中硬段PBT长度的减小 ,弹性模量、抗拉强度降低 ,特性粘度、吸水量及断裂形变量增加 ,材料性能良好可调  相似文献   

5.
合成了不同软链段长度和不同硬链段含量的系列对苯二甲酸乙二酯-环氧乙烷(PET-PEO)多嵌段共聚物,用NMR质子港测定了硬链段含量,对部分溶于氯仿的PET-PEO多嵌段共聚物进行了分离,并分别测定其氯仿可溶物和不溶物的硬链段含量、熔融热谱和热结晶谱.揭示了PET-PEO多嵌段共聚物的组成不均一性及其对软镇段长度和硬链段含量的依赖性,进而用DSC热谱证明了软链段和硬链段的结晶能力与PET-PEO多嵌段共聚物组成不均一性密切相关.  相似文献   

6.
用差示扫描量热法(DSC),广角X射线衍射(WAXD),傅立叶变换红外光谱(FTIR)等技术研究了对苯二甲酸丁二酯-ε-己内酯(PBT—PCL)多嵌段共聚物中硬链段的受限结晶。结果表明,PBT—PCL共聚酯中软硬链段在非晶区的混容性比较好,不同组成的样品均显示出一个玻璃化转变温度;对硬段含量超过50%的共聚酯来说,硬链段可以结晶,而软链段不能结晶;由于硬链段的受限特点,BT硬链段的结晶受软链段的影响和制约,其结晶能力随硬段序列长度的增加而逐渐增大。  相似文献   

7.
相同软硬段质量配比聚醚酯弹性体PEG/PBT的结构与表征   总被引:9,自引:0,他引:9  
以熔融缩聚法合成了一系列聚乙二醇(PEG)/聚对苯二甲酸丁二醇酯(PBT)聚醚酯热塑性弹性体,用NMR,FTIR,DSC及力学性能测试等方法表征了材料的结构及性能.讨论了在相同软硬段质量配比下,不同软硬段长度对材料性能的影响.结果表明,随着软段PEG长度增加,硬段PBT长度相应增长,弹性模量基本保持不变,抗拉强度、屈服应力及特性粘度增加.  相似文献   

8.
为了探索生物基乙二醇中的1,2-丁二醇(1,2-BDO)作为共聚单体对生物基聚对苯二甲酸乙二醇酯(PET)的结晶行为和力学性能的影响。 本文合成了生物基PET均聚物和不同1,2-BDO共聚单元摩尔分数的系列生物基PET共聚物(共聚单体摩尔分数分别为2.0%、2.7%和5.6%),并采用傅里叶变换红外光谱仪(FTIR)、差示扫描量热仪(DSC)和力学测试等技术手段研究了其结晶行为和力学性能。 结果表明,随着1,2-BDO共聚单元摩尔分数的增加,PET共聚物的熔融温度、结晶速率及结晶度均明显降低,表明1,2-BDO共聚单体的引入破坏了PET分子链的规整性,阻碍了PET链段的结晶。 PET材料的拉伸强度随着1,2-BDO共聚单元摩尔分数的增加而降低,而弯曲强度和弯曲模量略有升高。  相似文献   

9.
本文通过红外光谱、DSC和电镜等手段阐明了聚对苯二甲酸乙二酯-聚四亚甲基醚多嵌段共聚物的聚集态结构,特别是采用核磁共振法测定了嵌段比例和序列分布。  相似文献   

10.
制备了高分子量的聚丁二酸丁二醇酯,并通过与对苯二甲酸二甲酯的无规共聚调节其生物可降解性及力学性能,得到了具有优良机械性能和不同生物降解速度的一系列共聚物,并对共聚物序列结构、热力学性能、结晶性进行了研究.结果表明,该共聚物为无规共聚物,PBS和PBT分别结晶.共聚物的结晶熔点符合无规共聚物的Flory方程.  相似文献   

11.
Block copolymers demonstrate excellent thermal and mechanical properties superior to their corresponding random copolymers and homopolymers. However, it is difficult to synthesize block copolymers comprising of different polyester segments by copolycondensation due to the serious transesterification reaction. In this study, multiblock copolymers comprising of two different polyester segments, i.e. crystallizable poly(butylene succinate) (PBS) and amorphous poly(1,2‐propylene succinate) (PPSu), were synthesized by chain‐extension with hexamethylene diisocyanate (HDI). Amorphous PPSu segment was incorporated to improve the impact strength of PBS. The copolymers were characterized by GPC, laser light scattering (LLS), NMR, DSC, and mechanical testing. The results of 13C NMR spectra suggest that multiblock copolymers with regular sequential structure have been successfully synthesized. The data of DSC and mechanical testing indicate that block copolymers possess excellent thermal and mechanical properties with satisfactory tensile strength and extraordinary impact strength achieving upto 1900% of pure PBS. The influence of PPSu ratio and chain length of both the segments on the thermal and mechanical properties was investigated. The incorporation of an amorphous soft segment PPSu imparts high‐impact resistance to the copolymers without obviously decreasing the melting point (Tm). The favorable mechanical and thermal properties of the copolymers also depend on their regular sequential structure. At the same time, the introduction of amorphous PPSu segment enhances the enzymatic degradation rate of the multiblock copolymers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Three series of poly(butylene terephthalate-co-succinate)-b-poly(ethylene glycol) segmented random copolymers with starting PEG number-average molecular weight (Mn(PEG)) at 600, 1000 and 2000, respectively, as well as hard segment poly(butylene succinate) (PBS) molar fraction (MPBS) increasing from 10% to 30% were synthesized through a transesterification/polycondensation process and characterized by means of GPC, NMR, DSC, WAXD and mechanical testing etc. The investigations were mainly focused on the influence of Mn(PEG) on the properties of resulting copolymers bearing two sorts of hard segments. It is revealed that all the samples show a relatively symmetrical GPC curves with the number-average molecular weight more than 4 × 104, while the polydispersity decreases from 1.9 to 1.4 as the increasing Mn(PEG) because of the prolonged time for polycondensation and the faster exclusion of small molecules by-product with the decreased molten viscosity. The sequence distribution analysis shows that the average sequence length of hard segment PBT decreases while that of PBS increases with the increasing MPBS and are independent of the soft segment length. The approximate unit degree of randomness as well as the soft segment length turns out that the segments take a statistically random distribution along the backbone. Micro-phase separation structure is verified for the appearance of two glass transition temperatures and two melting points, respectively, in DSC thermograms of most samples. The depression of melting points and the reduction of crystallinity of hard segments with increasing MPBS are related to the crystal lattice transition from α-PBT to PBS and discussed in the viewpoint of cohensive energy. Mechanical testing results demonstrate that the increase of amorphous domains the increase of MPBS as well as Mn(PEG) will provide high elongation and good flexibility of copolymer chain. The in vitro degradation experiments show that the partial substitution of aromatic segment PBT with aliphatic PBS will substantially accelerate the degradation rate with enhanced safety of degradation by-products and while changing Mn(PEG) broaden the spectrum to tailor the properties.  相似文献   

13.
聚丙交酯/聚乙二醇多嵌段共聚物的合成及其性能   总被引:18,自引:0,他引:18  
聚丙交酯 (PLLA)由于具有良好的生物降解性和生物相容性 ,在医学领域已经得到了广泛的临床应用 ,近来又被制备成细胞支架大量应用于组织工程中[1,2 ] ,但由于其疏水性而造成细胞亲和性不好 .聚乙二醇 (PEG)具有良好的亲水性 ,良好的生物相容性 ,但是PEG是非降解性的 ,只有低分子量的PEG可以被吞噬细胞所吞噬或透过肾滤膜而排出体外 ,因此 ,低分子量的PEG常被用来与丙交酯 (L LA)共聚以改善PLLA支架的亲水性 .聚丙交酯 聚乙二醇共聚物 (PLE)的三嵌段及两嵌段共聚物的合成及其性能的研究已被广泛报道[3~ 5] .研究…  相似文献   

14.
Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra‐amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra‐amide segment (T6T6T) based on dimethyl terephthalate (T) and hexamethylenediamine (6) was used. The resulting copolymers were melt‐processable and transparent. The crystallinity of the copolymers was investigated by differential scanning calorimetry (DSC) and Fourier Transform infrared (FTIR). The thermal properties were studied by DSC, temperature modulated synchrotron small angle X‐ray scattering (SAXS), and dynamic mechanical analysis (DMA). The elastic properties were evaluated by compression set (CS) test. The crystallinity of the T6T6T segments in the copolymers was high (>84%) and the crystallization fast due to the use of monodisperse tetra‐amide segments. DMA experiments showed that the materials had a low Tg, a broad and almost temperature independent rubbery plateau and a sharp flow temperature. With increasing PEO length both the PEO melting temperature and the PEO crystallinity increased. When the PEO segment length was longer than 2000 g/mol the PEO melting temperature was above room temperature and this resulted in a higher modulus and in higher compression set values at room temperature. The properties of PEO‐T6T6T copolymers were compared with similar poly(propylene oxide) and poly(tetramethylene oxide) copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4522–4535, 2007  相似文献   

15.
Polyethylene terephthalate(PET)/polycaprolactone(PCL) segmented copolymers with different hard segment contents and a blend of two of them were studied by using DSC, WAXS, TEM and IR techniques and dynamic mechanical, stress-strain and isothermal crystallization measurements. Emphasis was laid on the studies of influence of compositional heterogeneity on the morphology and properties of these segmented copolymers. It was found that the solution cast specimens of the more heterogeneous sample exhibit better segregation of segments, high crystallinity and melting temperature. They have higher thermal stability of mechanical properties at small deformations. However, they are less stable against large deformations and may become softer than the more homogeneous ones.  相似文献   

16.
Biodegradable poly(sebacic anhydride-co-caprolactone) (PSA-co-PCL) multi-block copolymers were prepared by condensation of acylated PSA and PCL prepolymers with different weight ratios. The homopolymer and copolymers were characterized by 1H-NMR, gel permeation chromatography (GPC), differential scanning calorimeter (DSC) and atom force microscope (AFM). 1H-NMR and GPC has indicated the formation of PSA-co-PCL multi-block copolymers, in which PSA and PCL segments are randomly distributed. The incorporation of PCL segments into the molecule chains even at a content of 20 wt% could significantly decrease the molecular weight distribution of the copolymer and increase its weight average molecular weight, as compared with PSA homopolymer. DSC has revealed that the melting temperature and degree of crystallinity for both SA and CL components are strongly composition dependent, implying the hindrance effect of the two components on crystallinity of each other. AFM observation has shown the difference in crystalline structures between PSA and PCL phases in the copolymers. In-vitro degradation tests performed at 37 °C in PBS buffer solution (pH 7.4, 0.1 M) have demonstrated the acceleration of degradation rate of the sample with increasing SA content in the copolymer.  相似文献   

17.
A series of multiblock poly(ether-ester)s based on poly(butylene succinate) (PBS) as the hard segments and hydrophilic poly(ethylene oxide) (PEO) as the soft segments was synthesized with the aim of developing degradable polymers which could combine the mechanical properties of high performance elastomers with those of flexible plastics. The aliphatic poly(ether-ester)s were synthesized by the catalyzed two-step transesterification reaction of dimethyl succinate, 1,4-butanediol and α,ω-hydroxyl terminated poly(ethylene oxide) (PEO, = 1000 g/mol) in bulk. The content of soft PEO segments in the polymer chains was varied from about 10 to 50 mass%. The effect of the introduction of the soft PEO segments on the structure, thermal and physical properties, as well as on the biodegradation properties was investigated. The composition and structure of these aliphatic segmented copolyesters were determined by 1H NMR spectroscopy. The molecular weights of the polyesters were verified by gel permeation chromatography (GPC), as well as by viscometry of dilute solutions and polymer melts. The thermal properties were investigated using differential scanning calorimetry (DSC). The degree of crystallinity was determined by means of DSC and wide-angle X-ray scattering. A depression of melting temperature and a reduction of crystallinity of the hard segments with increasing content of PEO segments were observed. Biodegradation of the synthesized copolyesters, estimated in enzymatic degradation tests in phosphate buffer solution with Candida rugosa lipase at 37 °C was compared with hydrolytic degradation in the buffer solution. The weight losses of the samples were in the range from 2 to 10 mass%. GPC analysis confirmed that there were significant changes in molecular weight of copolyesters with higher content of PEO segments, up to 40% of initial values. This leads to conclusion that degradation mechanism of the poly(ether-ester)s based on PEO segments occurs through bulk degradation in addition to surface erosion.  相似文献   

18.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号