首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
合成了水溶性硒化镉(CdSe)量子点,利用组装技术和静电吸附作用,将带正电荷的血红蛋白(Hb)和带负电荷的CdSe量子点层层组装到壳聚糖(chit)修饰的玻碳电极(GCE)表面,构建基于{Hb/CdSe}n多层膜的无电子媒介体的电流型生物传感器({Hb/CdSe}3/chit/GCE).运用紫外-可见吸收光谱、电致化学发光、交流阻抗和循环伏安技术来表征修饰膜,并研究传感器的作用机理、性能及分析应用.结果表明:与量子点薄膜法及量子点/血红蛋白复合物法等固载血红蛋白的其他方法相比,层层组装法能显著提高血红蛋白的固定量,保持血红蛋白的生物活性,增强传感器的灵敏度和稳定性.传感器检测H2O2的线性范围为4.0×10-8~4.8×10-6 mol·L-1(r=0.999 1),检测限为2.0×10-8mol·L-l.多层膜的电致化学发光研究,表明修饰电极有望用于电致化学发光传感器的制备.  相似文献   

2.
Graphene-CdS (G-CdS) nanocomposites were successfully prepared by CdS nanocrystals (CdS NCs) formed in situ on the surface of graphene sheets, using graphene oxide (GO) sheets with rich negatively charged carboxylic acid groups as starting materials. Compared with pure CdS NCs, the presence of the graphene doped in G-CdS nanocomposites could facilitate the electrochemical redox process of CdS NCs; further, the as-prepared G-CdS nanocomposite can react with H2O2 to generate strong and stable electrochemiluminescent (ECL) emission, which not only enhances its ECL intensity by about 4.3-fold but also decreases its onset potential for about 320 mV. The as-prepared solid-state ECL H2O2 sensor shows acceptable linear response from 5 μM up to 1 mM with a detection limit of 1.7 μM (S/N = 3). The ECL H2O2 sensor exhibits excellent reproducibility and long-term stability. Such a property would promote the potential application of the graphene as enhanced materials in fabricating sensors for chemical and biochemical analysis.  相似文献   

3.
通过一定体积比的CdS和普鲁士蓝(PB)胶体纳米溶液的简单混合,制备了PB/CdS纳米复合物。在共反应剂存在条件下,PB纳米粒子含量较低时,在ITO电极上CdS纳晶的电致化学发光(ECL)强度可以增强3倍左右。PB纳米粒子含量较高时,CdS纳晶的ECL强度则显著降低。详细讨论了PB纳米粒子对CdS纳晶ECL影响的机理。PB纳米粒子对CdS纳晶的ECL增强可用于H2O2传感。该传感器对H2O2响应的线性范围为3.3×10-8~6.5×10-3 mol.L-1(R=0.999 2),检测限为12 nmol.L-1(S/N=3),传感器具有良好的稳定性和重现性。  相似文献   

4.
CdS nanocrystals (NCs) usually exhibit very weak electrochemiluminescence (ECL) emission. It is showed that when CdS NCs were treated by heating in the presence of ammonia (heated-CdS–NH3), greatly enhanced ECL was observed. The ECL of the heated-CdS–NH3 modified glassy carbon electrode (heated-CdS–NH3/GCE) in phosphate buffer solution (pH 7.0) containing 0.1 M K2S2O8 was ca. 310 times higher than that of CdS/GCE. The treatment caused the changes in the morphology and surface electronic structure of CdS NCs, which facilitated the reduction process of CdS, consequently improved the quantity of the excited states (CdS*), leading to enormous enhancement in ECL.  相似文献   

5.
A new amperometric biosensor for hydrogen peroxide (H2O2) has been developed that is based on direct electrochemistry and electrocatalysis of hemoglobin (Hb) in a multilayer inorganic–organic hybrid film. o-Phenylenediamine (PDA) was electropolymerized onto a glassy carbon electrode (GCE), and then negatively charged nanogold particles and positively charged poly(diallyldimethylammonium chloride) (PDDA) were alternately assembled on the PDA/GCE surface. Finally, Hb was electrostatically adsorbed on the surface of gold nanoparticles. The electrochemical behavior of the resulting biosensor (Hb/{nanogold/PDDA}n/PDA/GCE) was assessed and optimized. The performance and factors influencing the biosensor were studied in detail. Under optimal conditions, the immobilized Hb displayed good electrocatalytic response to the H2O2 reduction ranging from 1.3 μM to 1.4 mM with a detection limit of 0.8 μM (at 3δ). In addition, the biosensor exhibited rapid response, good reproducibility, and long-term stability. Electronic supplementary material to this paper is available in electronic form at Correspondence: Dianyong Tang, Department of Chemistry and Life Science, Leshan Teachers College, Sichuan (Leshan) 614000, P.R. China  相似文献   

6.
Compounds of the general formula V2 − yWyO5 + δ < eqid3 > nH2O (0 < y ≤ 0.25) with the layered structure of polyvanadic acid V2O5 < eqid4 > nH2O (H2V12O31 − δ < eqid5 > nH2O) have been prepared from peroxide solutions using the sol–gel process. The samples contain up to 5–8 wt% vanadium (IV). The water content changes within the range of 0.7 ≤ n ≤ 1.5 in depending on tungsten concentration. The V2 − yWyO5 + δ < eqid6 > nH2O (y ≤ 0.125) form the thin films described an interlayer distance of 11.60 ± 0.05 Å. The thermal properties, IR, and X-ray photoelectron spectra of the compounds synthesized have been studied. The thermal stability of the phases increases with the rising of tungsten content. The dehydration finishes with the forming solid solution V2−yWyO5 and WO3. The electrical conductivity of V2−yWyO5 + δ < eqid7 > nH2O (0 < y ≤ 0.25) powders was measured between 293 and 473 K at a relative humidity of 12%. The activation energy of conduction is independent upon the W content and equals 0.22–0.24 eV. Partial substitution of vanadium for tungsten was found to reduce the conductivity of the phases. The conductivity of the films increases with the increasing of relative air humidity and is governed by proton diffusion across the V-O-W layers.  相似文献   

7.
A series of homodinuclear Pt compounds containing the anionic, potentially terdentate NCN ligand (NCN=[C6H3(Me2NCH2)2-2,6]) or its 4-ethynyl derivative were prepared. The two platinum centres are linked together in two different fashions: (i) directly linked by an ethynyl or diethynylphenyl group (head-to-head) and (ii) indirectly bonded by a ethynyl- or butadiynyl-linked bis-NCN ligand (tail-to-tail). The reaction of the head-to-head σ,σ′-ethynylide complex {Pt}CC{Pt} ({Pt}=[Pt(C6H3{CH2NMe2}2-2,6)]+) with [CuCl]n yields {Pt}Cl and [Cu2C2]n, while with [Cu(NCMe)4][BF4] a Cu(I) bridged complex was formed: [(η2-{Pt}CC{Pt})2Cu][BF4]. The results of cyclic voltammetry experiments reveal that both connection modes of the two platinum centres lead to electrochemically independent Pt–NCN units. The X-ray crystal structure analysis of the neutral, tail-to-tail bridging butadiyne bis-NCNH ligand [C6H3(CH2NMe2)-1,3-(CC)-5]2 is reported.  相似文献   

8.
Heterogeneous electrocatalytic reduction of hydrogen peroxide (H2O2) by C60 is reported for the first time. C60 is embedded in tetraoctylammonium bromide (TOAB) film and is characterized by scanning electron microscopy and cyclic voltammetry. Electrocatalytic studies show that the trianion of C60 mediates the electrocatalytic reduction of H2O2 in aqueous solution containing 0.1 M KCl. Application of such film modified electrode as an amperometric sensor for H2O2 determination is also examined. The sensor shows a fast response within 1 s and a linear response is obtained (R = 0.9986) in the concentration range from 3.33 × 10−5 to 2.05 × 10−3 mol L−1 for H2O2, with the detection limit of 2 × 10−5 mol L−1 and the sensitivity of 1.65 μA mM−1. A good repeatability and stability is shown for the sensor during the experiment.  相似文献   

9.
Asymmetrical thin membranes of SrCe0.95Y0.05O3−δ (SCY) were prepared by a conventional and cost-effective dry pressing method. The substrate consisted of SCY, NiO and soluble starch (SS), and the top layer was the SCY. NiO was used as a pore former and soluble starch was used to control the shrinkage of the substrate to match that of the top layer. Crack-free asymmetrical thin membranes with thicknesses of about 50 μm and grain sizes of 5–10 μm were successfully pressed on to the substrates. Hydrogen permeation fluxes (JH2) of these thin membranes were measured under different operating conditions. At 950 °C, JH2 of the 50 μm SCY asymmetrical membrane towards a mixture of 80% H2/He was as high as 7.6 × 10−8 mol/cm2 s, which was about 7 times higher than that of the symmetrical membranes with a thickness of about 620 μm. The hydrogen permeation properties of SCY asymmetrical membranes were investigated and activation energies for hydrogen permeation fluxes were calculated. The slope of the relationship between the hydrogen permeation fluxes and the thickness of the membranes was −0.72, indicating that permeation in SCY asymmetric membranes was controlled by both bulk diffusion and surface reaction in the range investigated.  相似文献   

10.
Binuclear cycloheptatrienylchromium carbonyls of the type (C7H7)2Cr2(CO)n (n = 6, 5, 4, 3, 2, 1, 0) have been investigated by density functional theory. Energetically competitive structures with fully bonded heptahapto η7-C7H7 rings are not found for (C7H7)2Cr2(CO)n structures having two or more carbonyl groups. This result stands in contrast to the related (CnHn)2M2(CO)n (M = Mn, n = 6; M = Fe, n = 5; M = Co, n = 4) systems. Most of the predicted (C7H7)2Cr2(CO)n structures have bent trihapto or pentahapto C7H7 rings and CrCr distances in the range 2.4–2.5 Å suggesting formal triple bonds. In some cases rearrangement of the heptagonal C7H7 ring to a tridentate cyclopropyldivinyl or tridentate bis(carbene)alkyl ligand is observed. In addition structures with CO insertion into the C7H7–Cr bond are predicted for (C7H7)2Cr2(CO)n (n = 6, 4, 2). The global minima found for the (C7H7)2Cr2(CO)n derivatives for n = 6, 5, and 4 are (η5-C7H7)(OC)2CrCr(CO)41-C7H7), (η3-C7H7)(OC)2CrCr(CO)32,1- C7H7), and (η5-C7H7)2Cr2(CO)4, respectively. The global minima for (C7H7)2Cr2(CO)n (n = 3, 2) have rearranged C7H7 groups. Singlet and triplet structures with heptahapto η7-C7H7 rings are found for the dimetallocenes (η7-C7H7)2Cr2(CO) and (η7-C7H7)2Cr2, with the singlet structures being of much lower energies in both cases.  相似文献   

11.
Lithiation of O-functionalized alkyl phenyl sulfides PhSCH2CH2CH2OR (R = Me, 1a; i-Pr, 1b; t-Bu, 1c; CPh3, 1d) with n-BuLi/tmeda in n-pentane resulted in the formation of α- and ortho-lithiated compounds [Li{CH(SPh)CH2CH2OR}(tmeda)] (α-2ad) and [Li{o-C6H4SCH2CH2CH2OR)(tmeda)] (o-2ad), respectively, which has been proved by subsequent reaction with n-Bu3SnCl yielding the requisite stannylated γ-OR-functionalized propyl phenyl sulfides n-Bu3SnCH(SPh)CH2CH2OR (α-3ad) and n-Bu3Sn(o-C6H4SCH2CH2CH2OR) (o-3ad). The α/ortho ratios were found to be dependent on the sterical demand of the substituent R. Stannylated alkyl phenyl sulfides α-3ac were found to react with n-BuLi/tmeda and n-BuLi yielding the pure α-lithiated compounds α-2ac and [Li{CH(SPh)CH2CH2OR}] (α-4ab), respectively, as white to yellowish powders. Single-crystal X-ray diffraction analysis of [Li{CH(SPh)CH2CH2Ot-Bu}(tmeda)] (α-2c) exhibited a distorted tetrahedral coordination of lithium having a chelating tmeda ligand and a C,O coordinated organyl ligand. Thus, α-2c is a typical organolithium inner complex.Lithiation of O-functionalized alkyl phenyl sulfones PhSO2CH2CH2CH2OR (R = Me, 5a; i-Pr, 5b; CPh3, 5c) with n-BuLi resulted in the exclusive formation of the α-lithiated products Li[CH(SO2Ph)CH2CH2OR] (6ac) that were found to react with n-Bu3SnCl yielding the requisite α-stannylated compounds n-Bu3SnCH(SO2Ph)CH2CH2OR (7ac). The identities of all lithium and tin compounds have been unambiguously proved by NMR spectroscopy (1H, 13C, 119Sn).  相似文献   

12.
Gui-Fen Jie 《Talanta》2007,71(4):1476-1480
Electrogenerated chemiluminescence (ECL) of CdS nanotubes in aqueous solution and its sensing application were studied by entrapping the CdS nanotubes in carbon paste electrode. Two ECL peaks were observed at −0.9 V (ECL-1) and −1.2 V (ECL-2), respectively, when the potential was cycled between 0 and −1.6 V. The electrochemically reduced nanocrystal species of CdS nanotubes could collide with the oxidized species in an annihilation process to produce the peak of ECL-1. The electron-transfer reaction between the reduced CdS nanocrystal species and oxidant coreactants such as S2O82−, H2O2, and reduced dissolved oxygen led to the appearance of the ECL-2 peak. Based on the enhancing effect of H2O2 on ECL-2 intensity, a novel CdS ECL sensor was developed for H2O2 detection. The sensor exhibited a detection limit of 0.1 μM and a linear range from 0.5 μM to 0.01 mM. The relative standard deviations of five replicate determinations of 5 μM H2O2 was 2.6%. In addition, the ECL spectrum in aqueous solution also exhibited two peaks at 500 and 640 nm, respectively.  相似文献   

13.
A lithium Mo(V) diphosphate LiMoOP2O7 has been synthesized for the first time. It crystallizes in the space group P 21/n with a = 16.046(4) Å, b = 11.951(2) Å, c = 9.937(2) Å, β = 104.62(2)°. Its original structure is built up from P2O7 groups and MoO6 octahedra forming intersecting tunnels, where the Li+ cations are located with a tetrahedral coordination. This phase belongs to the IB class of Mo(V) phosphates defined by Costentin et al. The [MoP2O8] framework indeed consists of MoP2O11 units built up from one P2O7 group sharing two apices with the same MoO6 octahedron; the MoP2O11 units share their apices forming [MoP2O10]∞ chains running along a and b and the [ 04] direction. This phase exhibits a classical paramagnetic behavior, with 0 = -9.8 K and μ = 1.58 μB.  相似文献   

14.
Single crystals of iron(II) pyroborate, Fe2B2O5, were prepared at 1000–1050 °C under an argon atmosphere. The crystals were transparent, yellowish in color and needle-like or columnar. The crystal structure of Fe2B2O5 was analyzed by single-crystal X-ray diffraction. Refined triclinic unit cell parameters were a=3.2388(2), b=6.1684(5), c=9.3866(8) Å, α=104.613(3)°, β=90.799(2)° and γ=91.731(2)°. The final reliability factors of refinement were R1=0.020 and wR2=0.059 [I > 2σ(I)]. Transmittance over 50% in the visible light region from 500 to 750 nm was observed for a single crystal of Fe2B2O5 with a thickness of about 0.3 mm. The light absorption edge estimated from a diffuse reflectance spectrum was at around 350 nm (3.6 eV). Magnetic susceptibility was measured for single crystals at 4–300 K. Fe2B2O5 showed antiferromagnetic behavior below the Néel temperature, TN≈70 K, and the Weiss temperature was TW=36 K. The effective magnetic moment of Fe was 5.3μB.  相似文献   

15.
The double-perovskite Sr2NiMoO6−δ (SNMO) was investigated as an anode material of a solid oxide fuel cell (SOFC). With a 300 μm thick La0.9Sr0.1Ga0.8Mg0.2O3−σ (LSGM) disk as electrolyte and Ba0.5Sr0.5Co0.8Fe0.2O3−δ as the cathode, the SNMO anode showed power densities of 819 mW cm−2 in hydrogen at 1123 K. Moreover, there was no buffer layer between anode and electrolyte, which would reduce design techniques and save design cost. After test no chemical reaction was discovered between anode and electrolyte. The anode exhibited good conductivity and the value was around 60 S cm−1 in H2. Also it had almost linear thermal expansion from room temperature to 1253 K and the average thermal expansion coefficient was about 12.14 × 10−6 K−1, which was quite close to that of La0.9Sr0.lGa0.8Mg0.2O3 (12.17 × 10−6 K−1) electrolyte.  相似文献   

16.
Treatment of [(ClAu)2(diphosphine)] {diphosphine=bis(diphenylphosphino)methane (dppm), bis(diphenylphosphino)isopropane (dppip), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp)} with two equivalents of the anion [Fe2(μ-CO)(CO)6(μ-PPh2)] in the presence of TlBF4 gives the new heterometallic diclusters [{Fe2(μ-CO)(CO)6(μ-PPh2)Au}2(diphosphine)] that have been isolated and characterized. Their 31P-NMR spectra show different patterns as a function of the diphosphine ligand. The electrochemical behavior of these compounds has been investigated and compared with that of the mono- [Fe2(μ-CO)(CO)6(μ-PPh2)(μ-AuPPh3)] and tricluster [{Fe2(μ-CO)(CO)6(μ-PPh2)Au}3(triphos)] derivatives.  相似文献   

17.
The electronic structure and spectroscopic properties of [Hg3(o-C6F4)3]n · {benzene} (n = 1, 2) were studied at the HF, MP2 and PBE levels. The interaction between [Hg3(o-C6F4)3] and benzene at the HF and MP2 levels was analyzed. Secondary π-interactions (Hg–benzene) were found to be the main contribution short-range stability in the [Hg3(o-C6F4)3] · {benzene} complex. At the MP2 and PBE levels equilibrium Hg–C distances of 338.4 and 361.4 pm; and interaction energies of 46.6 and 29.2 kJ/mol were found, respectively. The absorption spectra of these complexes were calculated by the single excitation time-dependent method at PBE level.  相似文献   

18.
The structures of several Ga2O3–In2O3–SnO2 phases were investigated using high-resolution electron microscopy, X-ray diffraction, and Rietveld analysis of time-of-flight neutron diffraction data. The phases, expressed as Ga4−4xIn4xSnn−4O2n−2 (n=6 and 7–17, odd), are intergrowths between the β-gallia structure of (Ga,In)2O3 and the rutile structure of SnO2. Samples prepared with n≥9 crystallize in C2/m and are isostructural with intergrowths in the Ga2O3–TiO2 system. Samples prepared with n=6 and n=7 are members of an alternative intergrowth series that crystallizes in P2/m. Both intergrowth series are similar in that their members possess 1-D tunnels along the b axis. The difference between the two series is described in terms of different crystallographic shear plane operations (CSP) on the parent rutile structure.  相似文献   

19.
Ba analogues of hewettite (CaV6O16·9H2O) were synthesized by the hydrothermal methods. The compounds exhibit two phases formulated by BaV6O16·nH2O and Ba1+xV6O16·nH2O (x≈0.2,n≈3), and the structure of BaV6O16·nH2O has been determined from a single crystal study. It crystallizes in the orthorhombic systemPnmmwitha=12.162(3) Å,b=10.841(4) Å,c=17.035(4) Å, andZ=6 and the structure refinements led toR=0.066 andRw=0.076 for 1480 reflections withI>3σ(I). The structure is basically analogous to that ofγ-Li1+xV3O8or CaV6O16·9H2O, consisting of V6O16layers and interstitial hydrated Ba atoms. The V6O16layers stack along thecaxis with 8.518-Å spacing which is half of thecaxis; adjacent layers are mirror images of each other. Ba atoms reside in three kinds of sites with totally different oxygen coordinations. Their interlayer distributions result in another long period along thebaxis which is triple the ordinary 3.6-Å period of the hewettite compounds. This is the first single-crystal structural study of the synthetic hewettite compounds.  相似文献   

20.
The reaction of MoO2Cl2(OPMePh2)2 with t-butylhydroperoxide (TBHP) in the presence of cis-cyclooctene yields the tetrameric complex Mo4O6(O2)23-O)2{(μ2-O,μ3-OC8H14}2(OPMePh2)2, (1). Additionally in the absence of cis-cyclooctene MoO(O2)Cl2(OPMePh2)2, MoO(O2)2(H2O)(OPMePh2), (2), and two novel yellow compounds can be isolated depending on the quantity of TBHP used and the reaction conditions. Both the starting material MoO2Cl2(OPMePh2)2 and tetramer 1 are capable of accomplishing the epoxidation of cis-cyclooctene as catalysts. The single crystal X-ray determined structures of complexes 1 and 2 are reported.Dedicated to Professor F. A. “Chief” Cotton on the occasion of his 75th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号