首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel 4,4′‐dichloro‐2,2′‐[ethylenedioxybis(nitrilomethylidyne)]diphenol (H2L) and its complexes [CuL] and {[CoL(THF)]2(OAc)2Co} have been synthesized and characterized by elemental analyses, IR, 1H‐NMR and X‐ray crystallography. [CuL] forms a mononuclear structure which may be stabilized by the intermolecular contacts between copper atom (Cu) and oxygen atom (O3) to form a head‐to‐tail dimer. In {[CoL(THF)]2(OAc)2Co}, two acetates coordinate to three cobalt ions through Co? O? C? O? Co bridges and four µ‐phenoxo oxygen atoms from two [CoL(THF)] units also coordinate to cobalt ions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
An asymmetric bidentate Schiff-base ligand (2-hydroxybenzyl-2-furylmethyl)imine (L–OH) was prepared. Three complexes derived from L–OH were synthesized by treating an ethanolic solution of the appropriate ligand with an equimolar amount of metallic salt. Three complexes, Cu2(L–O?)2Cl2 (1), Ni(L–O?)2 (2) and Co(L–O?)3 (3), have been structurally characterized through elemental analysis, IR, UV spectra and thermogravimetric analysis. Single crystal X-ray diffraction shows metal ions and ligands reacted with different proportions 1?:?1, 1?:?2 and 1?:?3, respectively, so copper(II), nickel(II), and cobalt(III) have different geometries.  相似文献   

3.
Reaction of the binucleating S-protected ligand precursors 2-(N,N-dimethylthiocarbamato)-5-methylisophthalaldehyde di-2′-hydroxy anil (I) and 2-(N,N-dimethylthiocarbamato)-5-methylisophthalaldehyde di-2′-hydroxy 5′-methyl anil (II) with nickel(II) acetate tetrahydrate in the presence of pyrazole afforded the binuclear nickel(II) complexes [LINi2(pz)] (1) and [LIINi2(pz)] (2), respectively. The complexes have been characterized by routine physicochemical studies as well as by X-ray single crystal structure analysis. In both complexes, Ni(II) ions are doubly bridged by the thiophenolic sulfur of the pentadentate Schiff base ligand and a pyrazolate group. Efficient protocols for the oxidation of sulfides to sulfoxides with high selectivities, catalyzed by binuclear μ-thiophenolato-μ-pyrazolatonickel(II) in the presence of urea hydrogen peroxide (UHP) were explored. We obtained predominantly the monooxygenated product. The resulting products are obtained in good to excellent yields within a reasonable time.  相似文献   

4.
A new cobalt(II) cyanato complex, [Co(NCO)2(H2O)2(hmt)] (I) where hmt is hexamethylenetetramine, has been synthesized and structurally characterized. The electronic spectra of the solid compound suggest octahedral cobalt and IR spectra revealed monodentate N-cyanato groups and aqua ligands, while hmt is a bridging N, N′-bidentate leading to a 1-D infinite polymeric chain. The structure has been confirmed from single crystal X-ray diffraction. Crystal data for I : Fw 319.20, a = 9.234(2), b = 11.252(2), c = 12.576(3) Å, β = 107.75(3)°, V = 1244.5(4) Å3, Z = 4, T = 100 K. Crystal system : monoclinic, space group : C2/c. Hydrogen bonds of the type O–H ··· O and O–H ··· N between aqua molecules and O atom of the terminal N-cyanato groups or an N atom of hmt ligands consolidate and extend the structure to a 3-D network. The thermal properties of I are reported.  相似文献   

5.
New cationic tetranuclear Co(II) and neutral binuclear Cu(II) complexes with tpmc (N,N,N″,N″′-tetrakis-(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane) and bridging pyromellitate ligand pma (tetraanion 1,2,4,5-benzenetetracarboxylic acid) were isolated. The composition of the compounds is proposed based on elemental analyses (C, H, N, M=Cu, Co), molar conductivity determination, UV-Vis, FTIR, EPR, LC-MS and reflectance spectroscopy, magnetic measurements, cyclic voltammetry, as well as TG and DTA. It is proposed that in [Co4(pma)(tpmc)2](ClO4)4·6H2O (1), cobalt(II) is six-coordinate out of cyclam rings and one OCO? from pma participates in coordination with one Co(II). In the case of [Cu2(pma)tpmc]?8H2O (2), one OCO? from pma bridges two Cu(II). The cytotoxic activity of 1 and 2 was tested against tumor cell lines human cervix adenocarcinoma (HeLa), estrogen-receptor-positive human breast cancer (MCF-7), human myelogenous leukemia (K562), and the human Caucasian Burkitt’s lymphoma (Ramos). The IC50 values for 1 and 2 were within the range 44.66 ± 2.39 to 152.40 ± 2.28 μM, and from 140.88 ± 3.51 to 192.05 ± 2.09 μM, respectively. Both 1 and 2 were tested for antimicrobial activity. We determined that minimal inhibitory concentration for 1 against Staphylococcus aureus, Bacillus subtilis, and Klebsiella pneumoniae was 25 mM. Complex 2 did not express activity against tested microbial strains.  相似文献   

6.
Two multinuclear Co(II) complexes, [{Co(L)(i-PrOH)}2Co(H2O)]?2CH3CN (1) and [{Co(L)(μ-OAc)Co(MeOH)2}2]?2CH3COCH3 (2), have been synthesized with a new asymmetric Salamo-type ligand (H3L = 6-hydroxy-6′-ethoxy-2,2′-[ethylenediyldioxybis(nitrilomethylidyne)]diphenol). The Co(II) complexes were obtained by different solvents, and the structures are completely different. In the Co(II) complex 1, the ratio of the ligand H3L to Co(II) atom is 2 : 3 and the Co(II) ions are all five-coordinate with trigonal bipyramidal geometries. In the Co(II) complex 2, the ratio of the ligand H3L to Co(II) atom is 2 : 4. Two central Co(II) ions are six coordinate with distorted octahedral geometries and two terminal Co(II) ions are five coordinate with distorted trigonal bipyramidal geometries. Self-assembling of an infinite 1-D supramolecular chain is formed by C–H?π interactions in 1. Interestingly, an infinite 2-D-layer plane structure is formed by the self-assembling array of 2 linked by C–H?π interactions. 1 and 2 exhibit blue emissions with the maximum emission wavelengths λmax? = 403 and 395 nm when excited at 330 nm.  相似文献   

7.
Factors determining the complex formation reaction of copper(II), nickel(II) and cobalt(II) chloride and copper(II) bromide with 3,5-dimethyl-1-(hydroxymethyl)-pyrazole (HL) has been studied. Depending on experimental conditions, complexes with different composition were obtained: [CuCl2(dmp)]2 (I), [CuCl2(dmp)2]2 (II), [CoCl2(dmp)2] (III) (dmp=3,5-dimethylpyrazole), [CuBr(L)]2 (IV), [CoCl(L)(EtOH)]4 (V) and [NiCl(L)(EtOH)]4 (VI). The compounds were characterized by FTIR spectroscopy, solution conductivity and magnetic measurements. The crystal structure of [CoCl(L)(EtOH)]4 has been determined by single crystal X-ray diffraction. The thermal decomposition of the compounds was studied and found to be continuous for all of the compounds. The desolvation mechanism of [MCl(L)(EtOH)]4 (M=Co(II), Ni(II)) is explained on the basis of the route of complex formation of CoCl2 with HL.  相似文献   

8.
A novel naphthalenediol‐based bis(salamo)‐type tetraoxime compound (H4L) was designed and synthesized. Two new supramolecular complexes, [Cu3(L)(μ‐OAc)2] and [Co3(L)(μ‐OAc)2(MeOH)2]·4CHCl3 were synthesized by the reaction of H4L with Cu(II) acetate dihydrate and Co(II) acetate dihydrate, respectively, and were characterized by elemental analyses and X‐ray crystallography. In the Cu(II) complex, Cu1 and Cu2 atoms located in the N2O2 sites, and are both penta‐coordinated, and Cu3 atom is also penta‐coordinated by five oxygen atoms. All the three Cu(II) atoms have geometries of slightly distorted tetragonal pyramid. In the Co(II) complex, Co1 and Co3 atoms located in the N2O2 sites, and are both penta‐coordinated with geometries of slightly distorted triangular bipyramid and distorted tetragonal pyramid, respectively, while Co2 atom is hexa‐coordinated by six oxygen atoms with a geometry of slightly distorted octahedron. These self‐assembling complexes form different dimensional supramolecular structures through inter‐ and intra‐molecular hydrogen bonds. The coordination bond cleavages of the two complexes have occurred upon the addition of the H+, and have reformed again via the neutralization effect of the OH?. The changes of the two complexes response to the H+/OH? have observed in the UV–Vis and 1H NMR spectra.  相似文献   

9.
The reaction of the potassium salt of the N-(thio)phosphorylated thioureas AdNHC(S)NHP(O)(OiPr)2 (HLI , Ad = Adamantyl) and MeNHC(S)NHP(S)(OiPr)2 (HLII ) with Co(II) and Zn(II) in aqueous EtOH leads to [MLI,II 2] chelate complexes. They were investigated by UV-vis, 1H and 31P NMR spectroscopy, and microanalysis. The molecular structures of [MLI 2] were elucidated by single crystal X-ray diffraction analysis. The metal centers in both complexes are found to be in a distorted-tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated LI ligands. The photoluminescence properties of [ZnLII 2] are also reported.  相似文献   

10.
A monomeric complex [Co(Im)2(O2CMe)2] (1) and a novel aquabridged dimeric complex [Co2(μ‐H2O)(μ‐CMe)2(Im)4‐(O2CMe)2] (2) (Im = imidazole) have been synthesized and characterized. Complexes 1 and 2 coexisted in solution. Pure forms of either complex can be obtained from the same solution by controlling the crystallization conditions. All two complexes possess a carboxylate‐Im‐cobalt(II) triad system analogous to the carboxylate‐histidine‐metal triad systems that have been found in many zinc enzymes and cobalt(II)‐substituted enzymes. In 2, two Co2+ ions are connected by a water molecule in a bridging fashion with Co°Co [0.3687(1) nm], Co—OH2 [0.2159(3) nm], and Co‐OH2‐Co [117.2(3)°], in which the water molecule is further stabilized by two intramolecular hydrogen bonds with the oxygens of the terminal monodentate acetate groups with the distance of O…0 [0.2609(7) nm]. The terminal monodentate acetate groups display quite abnormal geometry due to the strong “pulling effect” on the carboxylates by intermolecular and intramolecular hydrogen bonds. Complex 2 showed weak antiferromagnetic coupling at low temperature with g = 2.22 and J = ?1.60 cm?1.  相似文献   

11.
This article outlines the magnetic features of a new six–coordinate high-spin cobalt(II) complex cis-[CoII(tmphen)2(NCS)2] ( 1 ) achieved via the reactions of cobalt(II) thiocyanate with 3,4,7,8-tetramethyl-1,10-phenanthroline. The complex 1 was thoroughly characterized by different analytical and spectroscopic techniques and further confirmed by single X-ray crystal diffraction pattern. Complex 1 is a neutral molecule and adopt highly distorted six-coordinate CoN6 octahedral coordination sphere surrounded by two thiocyanate N atoms in cis locations and the equatorial plane is occupied by two imine N atoms from the two tmphen ligand while the remaining two imine N atoms reside in the axial positions. Magnetic susceptibility data of complex 1 revealed that the χΜT values decrease significantly to a value of 1.49 cm3 · K · mol–1 at 2.0 K on decreasing temperatures below 100 K, mainly ascribed to the significant spin–orbit coupling (SOC) of six-coordinate CoII ions. Furthermore, a field-dependence measurement was performed at 2 K, which shows a positive curvature up to 27 kOe, while it becomes linear up to 2.01 B, which authenticated the fact that only the lowest Kramers doublet of ground state is appreciably populated.  相似文献   

12.
Aquabis(2-benzoylbenzoato)(1,10-phenanthroline)cobalt(II) and aquabis(2-benzoylbenzoato)(butanol)(1,10-phenanthroline)nickel(II) have been prepared and characterized by elemental analyses, IR and electronic spectroscopy, magnetic measurements, and single-crystal X-ray diffraction. [Co(bba)2(H2O)(phen)] (1) and [Ni(bba)2(H2O)(butOH)(phen)] (2) consist of neutral monomeric units and crystallize in the monoclinic (P2(1)) and triclinic (P 1) crystal systems, respectively. The cobalt(II) and nickel(II) sit on inversion centres and exhibit distorted octahedral coordination. Phen is bidentate chelating. In 1, bba is both monodentate and bidentate, whereas in 2 bba is only monodentate. bba ligands are coordinated to metal(II) with carboxylates and IR spectra of both complexes display characteristic absorptions of carboxylate anions {ν(OCO)asym and ν(OCO)sym} of bba. Thermal analysis shows that mass losses of 1 from 105°C to 456°C correspond to decomposition of phen and bba, while for 2 these occur at 271–529°C.  相似文献   

13.
A tetradentate N-donor ligand 1,4-bis[2-(2-pyridyl)benzimidazolato]butane (L) was prepared for construction of a coordination framework. Three one-dimensional coordination polymers {[M(II)L(NCS)2](DMF)2} n (M(II) = cadmium(II), 1, zinc(II), 2, manganese(II), 3) were obtained by reaction of metal ions and L in the presence of KSCN in DMF/water. The complexes are isostructural and consist of 1D zigzag [M(II)L(NCS)2] n chains and DMF molecules. Within the chains, the metal atoms are each octahedrally coordinated by four N atoms of L and two N atoms of the SCN? anions. Complexes 1 and 2 in the solid state at room temperature exhibit intense photoluminescence at 453 and 433 nm, respectively.  相似文献   

14.
A zinc(II) coordination polymer, [Zn4(o-bda)4(p-pbim)4] n (1) (p-pbim = 4-pyridylbenzimidazole, o-bda2? = o-phenylenediacetic acid dianion), has been synthesized by hydrothermal method and characterized by elemental analysis, IR, TG, photoluminescence and X-ray single crystal diffraction. Complex 1 crystallizes in a monoclinic system and space group P21 /n, with a = 14.231(3) Å, b = 16.257(4) Å, c = 16.794(4) Å, β = 100.262(1)°, and Z = 8; R 1 for 6475 observed reflections [I > 2σ(I)] was 0.0420. Complex 1 shows a bi-chain structure fabricated by the tetranuclear zinc unit. Two zinc(II) ions are five coordinate with distorted trigonal-bipyramid geometry; the other two zinc(II) ions are four coordinate with distorted tetrahedral geometry. Complex 1 builds the 1-D bi-chain structure with two different subrings A and B, which are 32-member and 14-member rings, respectively. There exists a 2-D supramolecular network linked by hydrogen-bonding interactions (2.695 and 2.807 Å). A 3-D supramolecular network is further constructed by non-covalent interactions between the 1-D bi-chain structure. The TG/DTG shows that the chain skeleton is thermally stable to 356°C. Blue fluorescent emission of the complex was determined at 404 nm in the solid state with short decay lifetime of 1.67 ns.  相似文献   

15.
2-Dimethylaminoethanol (dmea) reacted with tetraaqua-bis(saccharinato)cobalt(II) and -zinc(II) in n-butanol to yield the new complexes cis-[Co(sac)2(dmea)2] (1), and cis-[Zn(sac)2(dmea)2] (2) (sac?=?saccharinate). The complexes were characterized by elemental analyses, IR spectroscopy, DTA-TG and X-ray crystallography. Both complexes are isomorphous and crystallize in the monoclinic space group P21/c. The cobalt(II) and zinc(II) ions are coordinated by two neutral dmea ligands and two sac anions in a distorted octahedral environment. The dmea ligand acts as a bidentate N, O donor through the amine N and hydroxyl O atoms, while the sac ligand exhibits non-equivalent coordination, behaving as an ambidentate ligand; one coordinates to the metal via the carbonyl oxygen atom, while the other is N-bonded. The packing of the molecules in the crystals of both complexes is achieved by aromatic π(sac)–π(sac) stacking interactions, C–H?·?π interactions and weak intermolecular C–H?·?O hydrogen bonds involving the methyl groups of dmea and the sulfonyl oxygen atoms of the sac ligands. IR and UV spectra and thermal analysis are in agreement with the crystal structures.  相似文献   

16.
A tri-nuclear cobalt(II) cluster, [(CoL)2(OAc)2Co].2C2H5OH, has been synthesized by the reaction of cobalt(II) acetate tetrahydrate with a novel Salen-type bisoxime chelating ligand, 3,3'-dimethoxy-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol (H2L), and characterized by elemental analyses, IR spectra, TG-DTA and molar conductances. UV-vis spectroscopic titration in methanol solution clearly indicated the exclusive formation of the 3:2 [Co3L2]2+ cluster. The single-crystal X-ray diffraction determination of the Co(II) cluster shows that there are two acetate ions coordinate to three cobalt(II) ions through Co-O-C-O-Co bridges, and quadruple mu-phenoxo oxygen atoms from two [CoL] chelates also coordinate to cobalt(II) ions. Interestingly, different conformational central ions: five- and six-coordinated geometries were found in the cluster.  相似文献   

17.
Summary Reactions of glyoxal bis(morpholineN-thiohydrazone), H2gbmth, with NiCl2·6H2O, Ni(OAc)2·4H2O, Ni(acac)2· H2O, CuCl2·2H2O, Cu(OAc)2·H2O, Cu(acac)2, CoCl2· 6H2O, Co(OAc)2·4H2O and Co(acac)2·2H2O yield complexes of the type [M(gbmth)], [M=NiII, CuII or CoII]. Diacetyl reacts with morpholineN-thiohydrazide in the presence of nickel salts to yield [NiII(dbmth)], [NiII(dmth)(OAc)]H2O and [NiII(Hdmth)(NH3)Cl2] involving N2S2 and NSO donor ligands. Copper and cobalt complexes of N2S2 and NSO donor ligands with compositions [CuII(dbmth)], [CoII(dbmth)]·4H2O and [CoII(H2dbmth)]Cl2, have been isolated. The compounds have been characterised by elemental analyses, magnetic moments, molar conductance values and spectroscopic (electronic and infrared) data.  相似文献   

18.
A series of neutral octahedral nickel(II) complexes of 1,3-bis(2-pyridylmethylthio)propane (L) and pseudohalide (X), formulated as [NiII(L)X2] (where X?=?azide (1), cyanate (2), and isothiocyanate (3)), was synthesized. The complexes were characterized by physico-chemical and spectroscopic methods, and 1 and 3 also by single-crystal X-ray diffraction analyses. The structural study shows nickel in a distorted octahedral geometry comprised of the tetradentate NSSN ligand with trans pyridines and monocoordinated pseudohalides in cis positions. In dimethylformamide solution, the complexes had quasi-reversible NiII/NiIII redox couples in cyclic voltammograms with E 1/2 values of +0.732, +0.747, and +0.815?V for 1, 2, and 3, respectively. To examine the biological activities of these complexes, interaction of 3 with calf thymus DNA was studied spectroscopically, showing groove-binding interaction.  相似文献   

19.
Three multinuclear Cu (II), Zn (II) and Cd (II) complexes, [Cu2(L)(μ‐OAc)]·CHCl2 ( 1 ), [Zn2(L)(μ‐OAc)(H2O)]·3CHCl3 ( 2 ) and [{Cd2(L)(OAc)(CH3CH2OH)}2]·2CH3CH2OH ( 3 ) with a single‐armed salamo‐like dioxime ligand H3L have been synthesized, and characterized by FT‐IR, UV–vis, X‐ray crystallography and Hirshfeld surfaces analyses. The ligand H3L has a linear structure and C‐H···π interactions between the two molecules. The complex 1 is a dinuclear Cu (II) complex, Cu1 and Cu2 are all five‐coordinate possessing distorted square pyramidal geometries. The complex 2 also forms a dinuclear Zn (II) structure, and Zn1 and Zn2 are all five‐coordinate bearing distorted trigonal bipyramidal geometries. The complex 3 is a symmetrical tetranuclear Cd (II) complex, and Cd1 is a hexa‐coordinate having octahedral configuration and Cd2 is hepta‐coordinate with a pentagonal bipyramidal geometry, and it has π···π interactions inside the molecule. In addition, fluorescence properties of the ligand and its complexes 1 – 3 have also been discussed.  相似文献   

20.
Abstract

The ligand exchange reaction between [M(phen)3]2+ and [M(DIP)3]2+ (where M is the same and M = FeII or NiII, phen = 1,10-phenanthroline, DIP = 4,7-diphenyl-1,10-phenanthroline) has been investigated by reversed phase ion-paired chromatography (RP-IPC). The effect of pH and solvent on the ligand-exchange reaction is studied by monitoring the variation in chromatograms with time after mixing. The results have shown that the ligand exchange reaction between [M(phen)3]2+ and [M(DIP)3]2+ takes place in the pH range of 3–8 and the rate of reaction for nickel(II) complexes is about two times slower than that for iron(II) complexes. Experiments on the effect of various solvents on the ligand-exchange reaction have revealed that the rate of reaction is enhanced by the solvent in the following order: (CH3)2CO > CHCl3 ≥ CH2Cl2 > CH3CN > CH3OH. Elemental analysis and UV-visible spectroscopy confirmed that the products obtained from the ligand-exchange reaction are mixed-ligand complexes containing phen and DIP ligands, i.e., [M(phen)2(DIP)]2+ and [M(phen)(DIP)2]2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号