首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We report the structure and magnetism of a cobalt(II) compound with glycine acid, Co(C2H4NO2)2 · H2O (1). It crystallizes in the orthorhombic system, space group P2(1)2(1)2(1) with a = 5.2301(10) Å, b = 10.837(2) Å, c = 13.542(3) Å, R 1 = 0.0448, wR 2 = 0.1151. In 1, Co(II) has a slightly distorted square-pyramidal geometry defined by two O atoms and two N atoms from two glycine ligands, and by one O atom from an aqua ligand in the apical position. The molecules form a three-dimensional supramolecular network through O–H ··· O and N–H ··· O hydrogen bonds. Magnetic characterization shows 1 exhibits a negative Curie–Weiss constant and dominant spin-orbit coupling for Co(II).  相似文献   

2.
The linear trinuclear cobalt(II) complex [Co3(pytrz)6(H2O)6](NO3)6 (1) with pytrz = 4-(2-pyridine)-1,2,4-triazole has been prepared and characterized. It crystallizes in the rhombohedral R-3 space group with Z = 3, a = 13.955(2), b = 13.955(2), c = 28.942(9) Å, γ = 120°, V = 4881.2(18) Å3. The structure of 1 comprises the cation [Co3(pytrz)6(H2O)6]6+, in which linear trinuclear Co(II) units are bridged by six L ligands and have six aqua molecules as terminal ligands. The six free nitrates link the terminal aqua ligands through N–H ··· O hydrogen bonds with C3 symmetry. 1 was characterized by FT-IR, electronic spectra and magnetic measurements. The variable-temperature magnetic measurements reveal weak anti-ferromagnetic interactions in 1.  相似文献   

3.
A dinuclear copper(II) compound, [Cu(btssb)(H2O)]2 · 4(H2O) (1), and a 1-D chain copper(II) compound, [Cu(ctssb)(H2O)] n (2) [where H2btssb is 2-[(5-bromo-2-hydroxy-benzylidene)-amino]-ethanesulfonic acid and H2ctssb is 2-[(3,5-dichloro-2-hydroxy-benzylidene)-amino]-ethanesulfonic acid], were prepared and characterized. Compound 1 crystallizes in the monoclinic space group P21/c, with a = 10.109(2) Å, b = 20.473(4) Å, c = 6.803(1) Å, β = 100.32(3)°, V = 1385.1(5) Å3, and Z = 2; R 1 for 1796 observed reflections [I > 2σ(I)] was 0.0357. The geometry around each copper(II) can be described as slightly distorted square pyramidal. The CuII ··· CuII distance is 5.471(1) Å. Compound 1 formed a 1-D network through O–H ··· O hydrogen bonds and 1-D water chains exist. The 1-D chain complex 2 crystallizes in the triclinic space group P 1, with a = 5.030(2) Å, b = 7.725(2) Å, c = 17.011(5) Å, α = 92.706(4)°, β = 97.131(4)°, γ = 102.452(3)°, V = 638.6(3) Å3, and Z = 2; R 1 for 1897 observed reflections [I > 2σ(I)] was 0.0171. In 2, Cu(II) was also a slightly distorted square pyramid formed by two oxygens and one nitrogen from ctssb, one oxygen from another ctssb, and one water molecule. The complex formed a 1-D chain through O–S–O bridge of ctssb ligand. The 1-D chain further constructed a double chain through O?H ··· O hydrogen bonds.  相似文献   

4.
New hexanuclear complexes of lanthanum and neodymium iodides, [La6(H2O)23(OH)10]I8 · 8H2O (I) and [Nd6(H2O)23(OH)10]I8 · 8H2O (II), are synthesized and studied by X-ray diffraction analysis. The isostructural crystals of complexes I and II are orthorhombic: a = 13.197(4) Å, b = 15.152(3) Å, c = 15.302(4) Å and a = 13.060(4) Å, b = 14.967(5) Å, c = 15.098(4) Å, respectively; Z = 2, space group Pnnm. The lanthanum (neodymium) atoms coordinate the aqua and hydroxo ligands and enter the composition of the Ln6 -containing complex cations. The coordination polyhedron (ignoring the central oxygen atom) of each atom of the complexing agent is somewhat distorted square antiprism with the aqua and hydroxo ligands being in the vertices. Four bridging ligands link this atom of the complexing agent with the four adjacent atoms.  相似文献   

5.
A cobalt(II) coordination polymer [Co(4-TZBA2?)(H2O)2] (1) was obtained by treatment of Co(ClO4)2 · 6H2O with 4-(1H-tetrazol-5-yl)benzoic acid [H2(4-TZBA)] under hydrothermal conditions. The X-ray single crystal diffraction analysis reveals that 1 crystallizes in monoclinic P21/c, with a = 10.503(2) Å, b = 9.0860(18) Å, c = 10.179(2) Å, β = 96.75(3)° and Z = 4. In 1, adjacent cobalt(II) atoms are bridged by two 4-TZBA2? ligands to form a dimer, which is linked with six dimers to result in a 3-D structure. 1 exhibits strong luminescence at room temperature in the solid state.  相似文献   

6.
The title compound, poly­[[di­aqua­di­bromo­cadmium‐μ‐(1,3,5,7‐tetra­aza­tri­cyclo[3.3.1.13,7]decane‐N1:N5)‐aqua­cad­mium‐di‐μ‐bromo‐aqua­cadmium‐μ‐(1,3,5,7‐tetra­aza­tri­cyclo[3.3.1.13,7]decane‐N1:N5)‐di‐μ‐bromo] dihydrate], [Cd3­Br6­(C6­H12­N4)2­(H2O)4]·­2H2O, is made up of two‐dimensional neutral rectangular coordination layers. Each rectangular subunit is enclosed by a pair of Cd32‐Br)6(H2O)3 fragments and a pair of (μ2‐hmt)Cd(H2O)2Br22‐hmt) fragments as sides (hmt is hexa­methyl­enetetr­amine). The unique CdII atom in the Cd2Br2 ring in the Cd32‐Br)6(H2O)3 fragment is in a slightly distorted octahedral CdNOBr4 geometry, surrounded by one hmt ligand [2.433 (5) Å], one aqua ligand [2.273 (4) Å] and four Br atoms [2.6409 (11)–3.0270 (14) Å]. The CdII atom in the (μ2‐hmt)Cd(H2O)2Br22‐hmt) fragment lies on an inversion center and is in a highly distorted octahedral CdN2O2Br2 geometry, surrounded by two trans‐related N atoms of two hmt ligands [2.479 (5) Å], two trans‐related aqua ligands [2.294 (4) Å] and two trans‐related Br atoms [2.6755 (12) Å]. Adjacent two‐dimensional coordination sheets are connected into a three‐dimensional network by hydrogen bonds involving lattice water mol­ecules, and the aqua, bromo and hmt ligands belonging to different layers.  相似文献   

7.
Two 1-D linear coordination polymers, {[Gd2(L)2 · (Phen)2 · 2(H2O) · 2(NO3)] · 2(EtOH)} n (1) (H2L = olsalazine) and {[Eu2(L)2·(Phen)2 · 2(H2O) · 2(NO3)] · EtOH} n (2), were obtained from self-assembly of Gd(NO3)3 · 8H2O or Eu(NO3)3 · 8H2O with olsalazine. Both complexes are 1-D polymers, for 1 with crystal data: P 1, a = 11.651(4), b = 11.865(4), and c = 12.296(4) Å, α = 77.984(4)°, β = 65.559(4)°, and γ = 74.558(5)°, V = 1482.1(8) Å3, Z = 1, R 1 = 0.0389, wR 2 = 0.0793, and 2 with crystal data: P 1, a = 11.626(3), b = 11.834(3), c = 12.287(4) Å, α = 77.743(3), β = 65.576(3), γ = 74.371(3)°, V = 1472.5(5) Å3, Z = 1, R 1 = 0.0609, wR 2 = 0.1185. Central atoms (Gd or Eu) in both complexes adopt nine-coordinate tricapped trigonal prism geometry. CCDC No.: 694918 (1), 694919 (2).  相似文献   

8.
The structure of compound I: poly-diaqua(μ-imidazole-4,5-dicarboxylato-N,O; -O′; -O′′, -O′′′) calcium(II) monohydrate [Ca(C5H2N2O4)(H2O)2·H2O] is built of molecular sheets in which imidazole-4,5-dicarboxylate ligands bridge the metal ions using both carboxylate groups, each bidentate. Ca(II) is coordinated by six oxygen atoms and one hetero-ring nitrogen atom distributed at the apices of a capped tetragonal bipyramid. The basal plane of the pyramid is formed by two carboxylate oxygen atoms [d(Ca–O2?=?2.374(1)?Å, d(Ca–O4)?=?2.412(1)?Å] and two water oxygen atoms [d(Ca–O5)?=?2.384(1)?Å, d(Ca–O6)?=?2.455(1)?Å], the capped position is occupied by the carboxylate oxygen atom O3 [d(Ca–O3)?=?2.325(1)?Å], the hetero-ring nitrogen atom [d(Ca–N2)?=?2.523(1)?Å] and the carboxylate oxygen atom O4 [d(Ca–O2)?= 2.412(1)?Å] form the apices of the prism. The solvation water molecule plays a significant role in a framework of hydrogen bonds responsible for the stability of the crystal. The structure of compound II: trans-tetraquadi(H-imidazole-4,5-dicarboxylato-N,O) calcium(II) monohydrate, [Ca(C5H3N2O4)2(H2O)4·H2O] consists of monomers in which the Ca(II) ion is located on a centre of symmetry. The coordination around the Ca(II) is a strongly deformed pentagonal bipyramidal with the imidazole-4,5-dicarboxylate (4,5-IDA) ligands in the trans arrangement forming a dihedral angle of 68.3°. An imidazole-ring nitrogen atom [d(Ca–N)?=?2.632(2)?Å] and one carboxylate O atom [d(Ca–O)?=?2.531(2)?Å] from each ligand coordinate to the metal ion. The coordination is completed by four water oxygen atoms [d(Ca–O)?=?2.393(2)?Å] and [d(Ca–O)?=?2.367(2)?Å]. The coordinated water molecules act as hydrogen bond donors and acceptors to the unbonded carboxylate oxygen atoms in adjacent monomers giving rise to a three-dimensional molecular network.  相似文献   

9.
A new mononuclear complex Mn(bbbi)2(H2O)4(ClO4)2·(bbbi)2·(H2O)2 1 (bbbi = 1,4-bis(benzimidazol-1-yl)-2-butene) is synthesized under hydrothermal conditions and characterized by IR spectroscopy, elemental analysis, and single crystal X-ray structural analysis. Crystal data for 1: triclinic, , a = 8.8478(7) ?, b = 15.0550(11) ?, c = 16.4310(12) ?, α = 108.657(7)°, β = 104.044(7)°, Γ = 99.317(7)°, V = 1942.2(3) ?3, Z = 1, final R = 0.0621. Each manganese atom is octahedrally coordinated by four aqua ligands and two nitrogen atoms of two distinct bbbi ligands. The molecule is stabilized by hydrogen bonding and π…π interactions.  相似文献   

10.
A new calcium(II) complex of the saccharinate ligand (sac) with 2—hydroxyethylpyridinium (Hpyet) was synthesized and characterized by elemental analysis, FT—IR spectroscopy, thermal analysis and single crystal X—ray diffractometry. The [Ca(sac)2(H2O)2(Hpyet)2](sac)2 complex crystallizes in the triclinic space group (P1¯) with the cell dimensions a = 7.4360(7)Å, b = 12.5263(12)Å, c = 12.8329(13)Å, α = 82.534(8)°, β = 75.202(8)° and γ = 89.662(8)° (293 K). The title complex consists of a complex cation and two sac anions. In the complex cation, the calcium(II) ion is six—coordinate, bonding to two aqua ligands, two Hpyet ligands andtwo sac ligands located in the trans positions. Two of the sac ions are coordinated to the calcium(II) ion through the carbonyl O atom, while the other two remain outside the coordination sphere as the counter—ions. Thermal decomposition of the complex in air results in elimination of aqua, Hpyet, and sac ions, respectively.  相似文献   

11.
A novel dinuclear NiII complex, [Ni2(ntc)(H2O)10]·7(H2O) (1), with 1,4,5,8-naphthaenetetracarboxylate (ntc) has been synthesized and characterized by X-ray diffraction analysis, IR, UV-vis spectra and thermogravimetric analysis. Complex 1 crystallizes in triclinic system, space group P-1, a = 7.721(3) Å, b = 9.458(3) Å, c = 11.453(4) Å, α = 114.110(6)°, β = 92.184(6)°, γ = 107.472(6)°, V = 715.7(4) Å3, Z = 1, final R = 0.048. Each nickel atom is octahedrally coordinated by five aqua ligands and one oxygen atom of the bridging ntc connecting two nickel atoms. The resulting dinuclear NiII complex forms a 3D H-bonded network.  相似文献   

12.
Reaction of a fresh Cu(OH)2x(CO3)1—x · yH2O precipitate with adipic acid (H2L) and 2, 2'—bipyridine (bpy) in ethanolic aqueous solution at room temperature afforded the hydrogen adipato bridged CuII coordination polymer [Cu(bpy)(HL)]2L · 6H2O consisting of double chains according to {[Cu(bpy)(HL)2/2]2L} and hydrogen bonded H2O molecules. The chains result from [Cu(bpy)]2+ units bridged by bis—monodentate hydrogen adipato ligands and further crosslinked by bis—monodentate adipato ligands. Through the interchain π—π stacking interactions and interchain C(bpy)—H···O(adipato) hydrogen bonding interactions, the double chains are assembled into layers, between which the crystal H2O molecules are located. The Cu atoms are square pyramidally coordinated by two N atoms of one bpy ligand and three O atoms of one adipato ligand and two hydrogen adipato ligands. The doubly bonded oxygen atom of the protonated carboxyl group occupies the apical position (Cu—N: 1.997, 2.005 Å; equatorial Cu—O: 1.925, 1.942 Å; apical Cu—O: 2.354 Å). Furthermore, the thermal behavior of the compound will be discussed. Crystal data: triclinic, P1¯ (no. 2), a = 9.618(1) Å, b = 9.933(1) Å, c = 12.782(2) Å, α = 70.88(1)°, β = 73.70(1)°, γ = 75.60(1)°, V = 1090.7(2) Å3, Z = 1, R = 0.0453 and wR2 = 0.1265 for 4643 observed reflections (Fo2 > 2σ(Fo2)) out of 4985 unique reflections.  相似文献   

13.
A new Co(II) diphosphonate compound, [Co(HEDPH2)2] (4,4′-bipyH2)?·?H2O (1) has been successfully obtained by a rheological phase reaction at 80°C. Single-crystal diffraction analysis shows a 1-D chain structure and the 1-D chains are assembled via hydrogen bonds into a 3-D supramolecular structure with channels. The protonated 4,4′-bipy molecules are encapsulated in the channels. Magnetic study shows 1 to exhibit antiferromagnetic interaction in the 1D Co--O--P--O--Co chain. Crystal data for 1: monoclinic, space group Cc, a?=?15.754(6)?Å, b?=?14.457(5)?Å, c?=?10.020(4)?Å, β?=?92.024(6)°, V?=?2280.7(14)?Å3, Z?=?4.  相似文献   

14.
Two copper coordination polymers [Cu(obtz)(bdc)] n (1) and {[Cu(obtz)(phth)] · 2H2O} n (2) (obtz = 1,2-bis(1,2,4-triazol-1-ylmethyl)benzene, bdc = 1,3-benzenedicarboxylate, phth = 1,4-benzenedicarboxylate) were synthesized and characterized. Both 1 and 2 are 2-D networks constructed via the bridging ligands bdc and phth. The obtz ligands do not extend the dimension (2-D network) but add their thickness, 10.9 Å for 1 and 11.6 Å for 2. Complex 1 further constructs a 3-D network via π?π stacking interactions between the benzene rings of obtz ligands of adjacent 2-D networks. The thermal stabilities have been investigated.  相似文献   

15.
Reaction of CuCl2 · 2H2O, phenanthroline, maleic acid and NaOH in CH3OH/H2O (1:1 v/v) at pH = 7.0 yielded blue {[Cu(phen)]2(C4H2O4)2} · 4.5H2O, which crystallizes in the monoclinic space group C2/c (no. 15) with cell dimensions: a = 18.127(2)Å, b = 12.482(2)Å, c = 14.602(2)Å, β = 103.43(1)°, U = 3213.5(8)Å3, Z = 4. The crystal structure consists of the centrosymmetric dinuclear {[Cu(phen)]2(C4H2O4)2} complex molecules and hydrogen bonded H2O molecules. The Cu atoms are each square‐pyramidally coordinated by two N atoms of one phen ligand and three carboxyl O atoms of two maleato ligands with one carboxyl O atom at the apical position (d(Cu‐N) = 2.008, 2.012Å, equatorial d(Cu‐O) = 1.933, 1.969Å, axial d(Cu‐O) = 2.306Å). Two square‐pyramids are condensed via two apical carboxyl O atoms with a relatively larger Cu···Cu separation of 3.346(1)Å. The dinuclear complex molecules are assembled via the intermolecular π—π stacking interactions into 1D ribbons. Crossover of the resulting ribbons via interribbon π—π stacking interactions forms a 3D network with the tunnels occupied by H2O molecules. The title complex behaves paramagnetically between 5—300 K, following the Curie‐Weiss law χm(T—θ) = 0.435 cm3 · mol—1 · K with θ = 1.59 K.  相似文献   

16.
A new ruthenium(II) complex [Ru(NO2)4(CO)(H2O)]Cl2 · 2H2O has been prepared and characterized structurally. The compound crystallizes in monoclinic space group C2 /m, with the unit cell parameters a = 12.913(2), b = 14.605(2), c = 7.4494(1)Å, ß =121.49(2)°; V = 1198.0(3)Å3, Z = 4, Dc = 2.429 Mgm—3; μ = 1.83 mm—1; R = 0.0455, wR = 0.1552. The complex contains four neutral NO2 ligands. The ruthenium atom is six‐coordinated to four nitrogen atoms of nitrogen dioxide, one carbon atom from carbon monoxide and one oxygen atom from water molecule, forming slightly distorted octahedral coordination. The preparation procedure has been discussed.  相似文献   

17.
A supramolecular adduct of gadolinium aqua nitrato complex and cucurbit[6]uril { [Gd(NO3)(H2O)7](C5H5N)@(C36H36N24O12)}(NO3)2·10H2O is obtained by slow diffusion of methanol into an aqueous solution containing gadolinium nitrate, pyridine, and cucurbit[6]uril. According to single crystal X-ray diffraction data, water molecules coordinated to metal atom make hydrogen bonds to polarized carbonyl groups of the macrocycle. The heptaaquanitratogadolinium(III) [Gd(NO3)(H2O)7]2+ cation is structurally characterized for the first time. Crystal system is triclinic, space group \(P\overline 1 \), a = 12.3137(4) Å, b = 14.2334(5) Å, c = 19.5629(6) Å; α = 80.850(1)°, β = 86.879(1)°, γ = 68.855(1)°; V = 3157.15(18) Å3, Z = 2. Oriented hydrogen-bonded chains of alternating cucurbit[6]uril molecules and gadolinium aqua cations form in the crystal structure.  相似文献   

18.
A cobalt(II) compound, [Co4(L)2(OH)2(phen)2(H2O)4] · 6H2O (1), and a copper(II) compound, [Cu2(L)2(H2O)2][Cu(H2O)6] · 6H2O (2) [where H3L is 2-hydroxy-3-[(2-sulfoethylimino)-methyl]-benzoic acid and phen is O-phenanthroline], were prepared and characterized. The tetranuclear cobalt complex 1, C44H62N6O28S2Co4, crystallizes in the monoclinic space group P21/c, with a = 11.847(10) Å, b = 19.061(15) Å, c = 12.635(10) Å, β = 105.483(9)°, and Z = 2; R 1 for 4821 observed reflections [I > 2σ(I)] was 0.0679. Complex 1 is a centrosymmetric tetranuclear cobalt complex with all cobalts having distorted octahedral geometry. The molecule can be viewed as two planar [Co2(OH)(L)(Phen)H2O] units tied together by two terminal water molecules. The framework of 1 has the appearance of two connected face-sharing cubes, each with one vertex missing. The trinuclear copper complex 2, C20H44Cu3N2O26S2, crystallizes in the triclinic space group P1, with a = 7.524(1) Å, b = 7.902(2) Å, c = 16.885(4) Å, α = 88.993(6)°, β = 80.725(7)°, γ = 66.725(4)° and Z = 1; R 1 for 4298 observed reflections [I > 2σ (I)] was 0.0360. Complex 2 is an ionic compound, in which the three Cu(II) centers have two coordination modes. The molecule has a centrosymmetric dinuclear copper coordinated anion and a hexa-aqua-copper cation. The sulfonic acid group has less coordination ability than carboxylate oxygen.  相似文献   

19.
Syntheses, Spectroscopical Properties, and Crystal Structures of Binuclear Homo- and Heteroleptic μ-Carbido Complexes of Iron(IV) with Phthalocyaninate and Tetraphenylporphyrinate ligands μ-Carbidophthalocyaninato(2–)iron(IV)tetraphenylporphyrinato(2–)iron(IV) ( 2 ) and μ-carbido-bis(tetraphenylporphyrinato(2–)iron(IV)) ( 1 ) are synthesized by the reaction of phthalocyaninato(2–)ferrate(I) with dichlorcarbenetetraphenylporphyrinato(2–)iron(II). 1 and 2 as well as μ-carbido-bis(phthalocyaninato(2–)iron(IV)) ( 3 ) are soluble in tetrahydrofuran, but only 2 and 3 form solvent adducts 2 a and 3 a by coordination of thf to each of the iron atoms in trans position to the bridging C atom. The crystal structures of the solvates 1 · thf, 2 a · thf and 3 a · thf, crystallizing from the thf solutions, are determined: 1 · thf, orthorhombic, Fddd, a = 21.966(3) Å, b = 22.300(1) Å, c = 31.220(3) Å, Z = 8; 2 a · thf, orthorhombic, P22121, a = 14.487(3) Å, b = 20.753(5) Å, c = 25.803(7) Å, Z = 4; 3 a · thf, orthorhombic, P212121, a = 12.642(1) Å, b = 22.361(7) Å, c = 23.629(3) Å, Z = 4. In all three double-decker complexes both ”︁tetrapyrrol”︁”︁ ligands are held together by a linear Fe–C–Fe bridge in a staggered ( 1 · thf, 3 a · thf) or ecliptic conformation ( 2 a · thf). The Fe–C distances vary between 1.71 and 1.64 Å (average: 1.68 Å). In 2 a · thf and 3 a · thf the iron atoms are nearly in the centre (Ct) of the (Np)4 planes (d(Fe–Ct) ∼ 0.1 Å), but in 1 · thf these atoms are directed by 0.27 Å towards the bridging C atom. The macrocyclic ligands of 1 · thf are severely concavely, those of 2 a · thf and 3 a · thf slightly distorted. The electronic absorption spectra and vibrational spectra are discussed.  相似文献   

20.
The coordination compounds [CoL2Cl2] (I) and [CdL2(H2O)2(NO3)2] (II) have been synthesized by the reaction of CoCl2 · 6H2O and Cd(NO3)2 · 4H2O with L = 2-amino-4-methylpyrimidine (Ampym, C5H7N3), and their structures have been solved. The crystals of complex I are triclinic, space group $P\bar 1$ , a = 5.627(1) Å, b = 11.191(1) Å, c = 12.445(1) Å, α = 81.00(1)°, β = 77.21(1)°, γ = 76.18(1)°, V = 737.7(2) Å3, ρcalcd = 1.567 g/cm3, Z = 2. The crystals of complex II are monoclinic, space group P21/c, a = 10.390(1) Å, b = 11.982(1) Å, c = 7.624(1) Å, β = 102.61(1)°, V = 926.1(2) Å3, ρcalcd = 1.760 g/cm3, Z = 2. Discrete [CoL2Cl2] moieties are realized in the structure of complex I. The cobalt atom is tetrahedrally coordinated to the two nitrogen atoms of crystallographically nonequivalent ligands L and two chlorine atoms (Co(1)-Navg, 2.051(4)Å; Co(1)-Cl(1), 2.241(1) Å; Co(1)-Cl(2), 2.263 Å; bond angles at the cobalt atom lie within a range of 102.1°–118.6°). The complexes are linked into supramolecular zigzag chains by N-H...N(Cl) hydrogen bonds. In the structure of complex II, the Cd2+ ion (at the inversion center) is coordinated in pairs to the nitrogen atoms of ligand L and the O(NO3) and O(H2O) oxygen atoms. The coordination of the Cd2+ ion is distorted octahedral (Cd(1)-N(1), 2.341Å; Cd(1)-O(1), 2.340(4) Å; Cd(1)-O(4), 2.327(3) Å; bond angles at the cadmium atom lie within a range of 79.1°–100.9°). N-H...N hydrogen bonds link the complexes into supramolecular chains. These chains are linked into a supramolecular framework by the O-H...O hydrogen bonds between water molecules and NO3 groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号