首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Continuous chromatographic protein refolding   总被引:2,自引:0,他引:2  
Column-based protein refolding requires a continuous processing capability if reasonable quantities of protein are to be produced. A popular column-based method, size-exclusion chromatography (SEC) refolding, employs size-exclusion matrices to separate unfolded protein from denaturant, thus refolding the protein. In this work, we conduct a comparison of SEC refolding with refolding by batch dilution, using lysozyme as a model protein. Lysozyme refolding yield was found to be extremely sensitive to the chemical composition of the refolding buffer and particularly the concentration of dithiothreitol (DTT) introduced from the denatured protein mixture. SEC refolding was not adversely affected by DTT carry-over as small contaminants in the denatured solution are separated from protein during the refolding operation. We also find that, contrary to previous reports, size-exclusion refolding on batch columns leads to refolding yields slightly better than batch dilution refolding yields at low protein concentrations but this advantage disappears at higher protein concentrations. As batch-mode chromatography would be the limiting step in a column based refolding downstream process, the batch column refolding method was translated to a continuously operating chromatography system (preparative continuous annular chromatography, P-CAC). It was shown that the P-CAC elution profile is similar to that of a stationary column, making scale-up and translation to P-CAC relatively simple. Moreover, it was shown that high refolding yields (72%) at high protein concentration (>1 mg ml(-1)) could be obtained.  相似文献   

2.
RhNTA protein is a new thrombolytic agent which has potential medicinal and commercial value. Protein refolding is a bottleneck for large‐scale production of valuable proteins expressed as inclusion bodies in Escherichia coli. The denatured rhNTA protein was refolded by an improved size‐exclusion chromatography refolding process achieved by combining an increasing arginine gradient and a decreasing urea gradient (two gradients) with a size‐exclusion chromatography refolding system. The refolding of denatured rhNTA protein showed that this method could significantly increase the activity recovery of protein at high protein concentration. The activity recovery of 37% was obtained from the initial rhNTA protein concentration up to 20 mg/mL. After refolding by two‐gradient size‐exclusion chromatography refolding processes, the refolded rhNTA was purified by ion‐exchange and affinity chromatography. The purified rhNTA protein showed one band in SDS‐PAGE and the specific activity of purified rhNTA protein was 110,000 U/mg. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Protein refolding at high concentrations always leads to aggregation, which limits commercial application. An ion-exchange chromatography process with gradient changes in urea concentration and pH was developed to refold denatured lysozyme at high concentration. After adsorption of the denatured protein onto an ion-exchange medium, elution was carried out in combination with a gentle decrease in urea concentration and elevation of pH. Protein would gradually refold along the column with high activity yield. Denatured and reduced lysozyme at 40 mg/ml was loaded into a column filled with SP Sepharose Fast Flow, resulting in 95% activity recovery and 98% mass yield within a short period of time.  相似文献   

4.
Column-based refolding of complex and highly disulfide-bonded proteins simplifies protein renaturation at both preparative and process scale by integrating and automating a number of operations commonly used in dilution refolding. Bovine serum albumin (BSA) was used as a model protein for refolding and oxido-shuffling on an ion-exchange column to give a refolding yield of 55% after 40 h incubation. Successful on-column refolding was conducted at protein concentrations of up to 10 mg/ml and refolded protein, purified from misfolded forms, was eluted directly from the column at a concentration of 3 mg/ml. This technique integrates the dithiothreitol removal, refolding, concentration and purification steps, achieving a high level of process simplification and automation, and a significant saving in reagent costs when scaled. Importantly, the current result suggests that it is possible to controllably refold disulfide-bonded proteins using common and inexpensive matrices, and that it is not always necessary to control protein-surface interactions using affinity tags and expensive chromatographic matrices. Moreover, it is possible to strictly control the oxidative refolding environment once denatured protein is bound to the ion-exchange column, thus allowing precisely controlled oxido-shuffling.  相似文献   

5.
Bovine carbonic anhydrase (BCA) and its derivative with all lysine groups acetylated (BCA-Ac18) have different stabilities toward denaturation by sodium dodecyl sulfate (SDS). This difference is kinetic: BCA-Ac18 denatures more slowly than BCA by several orders of magnitude over concentrations of SDS ranging from 2.5 to 10 mM. The rates of renaturation of BCA-Ac18 are greater than those of BCA, when these proteins are allowed to refold from a denatured state ([SDS]=10 mM) to a folded state ([SDS]=0.1 to 1.5 mM). On renaturation, the yields of the correctly folded protein (either BCA or BCA-Ac18) decrease with increasing concentration of SDS. At intermediate concentrations of SDS (from 0.7 to 2 mM for BCA, and from 1.5 to 2 mM for BCA-Ac18), both unfolding and refolding of the proteins are too slow to be observed; an alternative process-probably aggregation-competes with refolding of the denatured proteins at those intermediate concentrations. Because it is experimentally impractical to prove equilibrium, it is not possible to establish whether there is a difference in the thermodynamics of unfolding/refolding between BCA and BCA-Ac18.  相似文献   

6.
Minichaperone sht GroEL191-345 was covalently coupled to NHS-activated Sepharose Fast Flow gel. Refolding of recombinant human interferon gamma (rhIFN-gamma) was carried out on a chromatographic column packed with immobilized minichaperone. The effects of salt concentration, urea concentration gradient, elution flow rate and protein loading on the refolding efficiency were investigated. The results indicated that immobilized sht GroEL191-345 chromatography was an effective protocol for the refolding of rhIFN-gamma. When loading 100 microl denatured rhIFN-gamma (17.8 mg/ml), the protein mass recovery and total activity obtained in this optimal process reached 74.25% and 6.74 x 10(6)IU/ml, respectively with the immobilized minichaperone column which was reused for 10 times with 25% decrease of renaturation capacity.  相似文献   

7.
Herein we report a new strategy for protein refolding by taking advantage of the unique surface and pore characteristics of ethylene-bridged periodic mesoporous organosilica (PMO), which can effectively entrap unfolded proteins and assist refolding by controlled release into the refolding buffer. Hen egg white lysozyme was used as a model protein to demonstrate the new method of protein refolding. Through loading of denatured proteins inside uniform mesoporous channels tailored to accommodate individual protein, protein aggregation was minimized, and the folding rate was increased. Poly(ethyleneglycol) (PEG)-triggered continuous release of entrapped denatured lysozyme allowed high-yield refolding with high cumulative protein concentrations. The new method enhances the oxidative refolding of lysozyme (e.g., over 80% refolding yield at about 0.6 mg/mL).  相似文献   

8.
The aggregation interaction between reduced-denatured egg white lysozymes during refolding procedure in urea solution was studied by means of reducing and non-reducing protein electrophoreses. Results of non-reducing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of the supernatant and aggregate precipitate formed in refolding process show that except being refolded to native egg white lysozymes, the reduced-denatured lysozymes can also form the aggregates with molecular weights (MW) being separately about 30.0 and 35.0 kD, while the reducing SDS-PAGE and the refolding results in the presence of sodium dodecyl sulphate show that these aggregates are formed chiefly through the misconnection of disulfide bonds between the reduced-denatured lysozymes, and the aggregate precipitates are formed through the non-covalent interactions between the aggregates with molecular weight being about 30.0 kD. From the results of electrophoresis and size-exclusion chromatographic analyses, it can be inferred that the aggregates with molecular weights being about 30.0 and 35.0 kD are bi-molecular and tri-molecular egg white lysozyme aggregates, respectively. And finally, a suggested refolding mechanism of reduced-denatured egg white lysozymes in urea solution was presented.  相似文献   

9.
A mechanism for size-exclusion chromatography-based protein refolding is described. The model considers the steps of loading the denatured protein onto a gel filtration column, and protein elution. The model predictions are compared with results of refolding lysozyme (10 and 20 mg/ml) using Superdex 75 HR. The main collapse in protein structure occurred immediately after loading, where the partition coefficient of unfolded lysozyme increased from 0.1 to 0.48 for the partially folded molecule. Use of a refolding buffer as the mobile phase resulted in complete refolding of lysozyme; this eluted at an elution volume of 15.6 ml with a final partition coefficient of 0.54. The model predicted the elution volume of refolded lysozyme at 19.3 ml.  相似文献   

10.
毕晶  白泉  王军  王骊丽 《色谱》2010,28(8):786-789
采用疏水相互作用色谱(HIC)对还原变性核糖核酸酶A (RNase A)在疏水性液-固界面上的复性进行了研究。详细讨论了流动相中脲的浓度、还原型谷胱甘肽/氧化型谷胱甘肽(GSH/GSSG)的比例、流动相pH和变性蛋白质浓度对还原变性RNase A复性效率和质量回收率的影响。结果表明,在最优化的复性条件(流动相中含有2.0 mol/L脲,GSH/GSSG的浓度比为8:1,流动相pH为8.0)下,还原变性RNase A能完全复性。当变性蛋白质质量浓度为5.0 mg/mL时,还原脲变性RNase A的活性回收率和质量回收率分别为98.0%和61.9%,还原胍变性RNase A分别为100.1%和66.8%。研究表明HIC是还原变性蛋白质复性的有力工具之一,可为蛋白质复性研究提供新方法和新思路。  相似文献   

11.
Chromatography‐based protein refolding is widely used. Detergent is increasingly used for protein solubilization from inclusion bodies. Therefore, it is necessary to develop a refolding method for detergent‐denatured/solubilized proteins based on liquid chromatography. In the present work, sarkosyl‐denatured/dithiothreitol‐reduced lysozyme was used as a model, and a refolding method based on ion exchange chromatography, assisted by β‐cyclodextrin, was developed for refolding detergent‐denatured proteins. Many factors affecting the refolding, such as concentration of urea, concentration of β‐cyclodextrin, pH and flow rate of mobile phases, were investigated to optimize the refolding conditions for sarkosyl‐denatured lysozymes. The results showed that the sarkosyl‐denatured lysozyme could be successfully refolded using β‐cyclodextrin‐assisted ion exchange chromatography. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Oxidative refolding of the denatured/reduced lysozyme was investigated by using weak-cation exchange chromatography (WCX). The stationary phase of WCX binds to the reduced lysozyme and prevented it from forming intermolecular aggregates. At the same time urea and ammonium sulfate were added to the mobile phase to increase the elution strength for lysozyme. Ammonium sulfate can more stabilize the native protein than a common eluting agent,sodium chloride. Refolding of lysozyme by using this WCX is successfully. It was simply carried out to obtain a completely and correctly refolding of the denatured lysozyme at high concentration of 20.0 mg/mL.  相似文献   

13.
边六交  杨晓燕 《中国化学》2006,24(5):653-659
Based on three-state renaturation process of denatured proteins, an equation describing the effect of denaturant concentration on renaturation yield of denatured proteins was presented. By this equation, two parameters n(m1 -m2) and Ka can be obtained. The former indicates the difference in the number of denaturant molecules between the renaturation process of n number of refolding intermediates from refolding intermediate state to native state and their aggregate process from refolding intermediate state to aggregate state, the latter denotes the apparent aggregate equilibrium constant for protein molecules aggregated from native state to aggregate state, and from them, the characteristics of the renaturation process of denatured proteins in denaturant solution can be identified. This equation was tested by the renaturation processes of denatured egg white lysozyme in guanidine hydrochloride and urea solutions, with the results to show that when guanidine hydrochloride and urea concentrations were separately higher than 1.25 and 3.00 mol/L or separately lower than 1.00 and 3.00 mol/L, the refolding intermediates of egg white lysozymes were more easily aggregated to aggregate state or more easily renatured to native state, respectively. Under different initial total egg white lysozyme concentrations in urea solution, the refolding egg white lysozyme intermediates could be deduced to have a tendency to form a bimolecular intermediate aggregate, and this inference was further confirmed by their nonreducing SDS-PAGE and size exclusion chromatography.  相似文献   

14.
Wang F  Liu Y  Li J  Ma G  Su Z 《Journal of chromatography. A》2006,1115(1-2):72-80
Dilution refolding of consensus interferon (C-IFN) had a limit on final concentration not exceeding 0.1 mg ml(-1) in order to achieve specific activity of 2.2x10(8) U mg(-1). Addition of polyethylene glycol (PEG) only gave a marginal improvement on the specific activity. Hydrophobic interaction chromatography (HIC) was tried but a simple step-wise elution could not refold the protein. Successful refolding was achieved by gradient elution with the decreasing of guanidine-hydrochloride (guanidine-HCl) concentration. The column was packed with a commercially available HIC medium that was designed for protein separation. Polyethylene glycol was found to possess better effect on the column than in the dilution for promotion of correct refolding, especially in gradient mode. A novel dual-gradient strategy, consisting of decreasing guanidine-HCl concentration and increasing PEG concentration, was developed to enhance the refolding yield. Denatured C-IFN was allowed to adsorb and elute from the HIC column through a gradually changed solution environment. Compared with dilution refolding, the gradient HIC process, in the presence of PEG, gave about 2.6-folds of increase in specific activity, 30% increase in soluble protein recovery. Partial purification was also achieved simultaneously.  相似文献   

15.
Continuous matrix-assisted refolding of proteins   总被引:7,自引:0,他引:7  
A refolding reactor was developed for continuous matrix-assisted refolding of proteins. The reactor was composed of an annular chromatography system and an ultrafiltration system to recycle aggregated proteins produced during the refolding reaction. The feed solution containing the denatured protein was continuously fed to the rotating bed perfused with buffer promoting folding of the protein. As the protein passed through the column, it was separated from chaotropic and reducing agents and the refolding process took place. Native proteins and aggregates could be continuously separated due to different molecular size. The exit stream containing aggregates was collected, concentrated by ultrafiltration and recycled to the feed solution. The high concentrations of chaotropic and reducing agents in the feed solution enabled dissociation of the recycled aggregates and consequently were fed again to the refolding reactor. When the initial feed mixture of denatured protein is used up, only buffer-containing chaotropic agents and recycled aggregates are fully converted to native protein. This process resulted in a stoichiometric conversion from the denatured protein to its correctly folded native state. The system was tested with bovine alpha-lactalbumin as model protein. Superdex 75 PrepGrade was used as size-exclusion medium. The yield of 30% active monomer in the batch process was improved to 41% at a recycling rate of 65%. Assuming that the aggregates can be redissolved and recycled into the feed stream in a quantitative manner, a refolding yield close to 100% is possible. The method can be also applied to other chromatographic principles suited for the separation of aggregates.  相似文献   

16.
The interaction of cutinase from Humicula insolens (HiC) and sodium dodecyl sulfate (SDS) has been investigated by small-angle neutron scattering (SANS) and isothermal titration calorimetry (ITC). The concerted interpretation of structural and thermodynamic information for identical systems proved valuable in attempts to elucidate the complex modes of protein-detergent interaction. Particularly so at the experimental temperature 22 degrees C, where the formation of SDS micelles is athermal (deltaH = 0), and the effects of protein-detergent interactions stand out clearly in the thermograms. It was found that the effect of SDS on cutinase depended strongly on the sample composition. Thus, addition of SDS corresponding to a molar ratio, n(s) = n(SDS)/n(HiC) of about 10, was associated with the formation of HiC/SDS aggregates, which include more than one protein molecule. The SANS results suggested that on the average such adducts contained two HiC, and the ITC traces showed that they form and break down slowly. At slightly higher SDS concentrations (n(s) = 10-25) these "dimers" dissociated, and the protein denatured. The denaturation showed the characteristic positive enthalpy change, but the SDS denatured state of HiC was unusually compact with a radius of gyration close to that of the native conformation. Further titration with SDS was associated with exothermic binding to the denatured protein until the saturation point at about n(s) = 90. At this point, the free monomer concentration was 2.2 mM and the binding number was approximately 40 SDS/HiC. Interestingly, this degree of SDS binding (approximately 0.5 g of SDS/g of HiC) is less than half the amount bound to typical water-soluble proteins.  相似文献   

17.
温敏型聚合物PNIPAAm辅助的溶菌酶体外复性   总被引:2,自引:0,他引:2  
合成了 3种具有不同分子量的温敏型聚合物聚 (N 异丙基丙烯酰胺 ) (PNIPAAm) ,测定了其分子量分布以及相应的低临界溶解温度 (LCST) .在溶菌酶复性溶液中加入PNIPAAm可促进溶菌酶复性 ,其中采用中等分子量M—PNIPAAm(Mw 为 2 2× 10 4 g mol)时溶菌酶的复性效果最佳 ,并采用荧光发射光谱技术表征了PMIPAAm分子结构对于溶菌酶结构的影响 .系统考察了采用M—PNIPAAm时 ,复性液中尿素浓度、蛋白质浓度和温度等条件对溶菌酶复性效果影响 .结果显示尿素与M—PNIPAAm对于溶菌酶复性呈现协同效应 ,复性操作温度不仅同溶菌酶自身特性有关 ,而且还受到M—PNIPAAm自身性质变化的影响 .研究结果表明温敏型高聚物在高浓度蛋白质的大规模体外复性中具有很好的应用前景  相似文献   

18.
The effect of sodium dodecyl sulfate (SDS) micelles on the reaction between the 3‐methylbenzenediazonium (3MBD) ion and either the hydrophilic antioxidant gallic acid (GA) or the hydrophobic analogue octyl gallate (OG) have been investigated as a function of pH. Titration of GA in the absence and presence of SDS micelles showed that the micelles do not alter the first ionization equilibrium of GA. Analysis of the dependence of the observed rate constant (kobs) with pH shows that the reactive species are GA2? and OG?. Kinetics results in the absence and presence of SDS micelles suggest that SDS aggregates do not alter the expected reaction pathway. SDS Micelles inhibit the spontaneous decomposition of 3MBD as well as the reaction between 3MBD and either GA or OG, and upon increasing the SDS concentration, with kobs approaching the value for the thermal decomposition of 3MBD in the presence of SDS. Our results are consistent with the prediction of the pseudophase model and show that the origin of the inhibition for the reaction with GA is different to that for the reaction with OG; in the former case, the observed inhibition can be rationalized in terms of the micelle‐induced electrostatic separation of reactants in the micellar Stern layer, whereas the observed inhibition in the reaction with OG is a consequence of the dilution effect caused by increasing SDS concentration, decreasing the local OG? concentration in the Stern layer.  相似文献   

19.
将氧化还原型谷胱甘肽(GSH/GSSG)共价键合到色谱固定相上, 实现了对变性核糖核酸酶(RNase)的复性. 实验发现, 谷胱甘肽键合柱具有典型的弱阳离子交换性质, 在离子交换(IEC)模式下能够对4种标准蛋白进行基线分离, 且具有较高的柱效. 当蛋白浓度为5 mg/mL, 流速为0.2 mL/min时, 在流动相中不加GSH/GSSG的条件下, GSH/GSSG柱对变性核糖核酸酶的活性回收率可达(39.5±3.8)%, 而普通IEC柱对变性核糖核酸酶的活性回收率几乎为0, 说明其对变性蛋白二硫键的正确对接具有明显的促进作用; 在收集液中加入GSH/GSSG后, 其活性回收率可达到(81.5±4.3)%. 本文结果对蛋白折叠液相色谱法的发展及降低蛋白复性成本具有一定的应用价值.  相似文献   

20.
Interaction between casein and sodium dodecyl sulfate   总被引:1,自引:0,他引:1  
The interaction of the anionic surfactant sodium dodecyl sulfate (SDS) with 2.0 mg/ml casein was first investigated using isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and fluorescence spectra. ITC results show that individual SDS molecules first bind to casein micelles by the hydrophobic interaction. The micelle-like SDS aggregate is formed on the casein chains when SDS concentration reaches the critical aggregation concentration (c1), which is far below the critical micellar concentration (cmc) of SDS in the absence of casein. With the further increase of SDS concentration to the saturate binding concentration c2, SDS molecules no longer bind to the casein chains, and free SDS micelles coexist with casein micelles bound with SDS aggregates in the system. DLS results show that the addition of SDS leads to an increase in the hydrodynamic radius of casein micelles with bound surfactant at SDS concentration higher than 4 mM, and also an increase in the casein monomer molecule (or submicelles) at SDS concentration higher than 10 mM. Fluorometric results suggest the addition of SDS leads to some changes in the binding process of hydrophobic probes to casein micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号